

SEARCH FOR TTH IN MULTILEPTON FINAL STATES

Chao Wang, Emmanuel Monnier, Fabrice Hubaut, Grigore Tarna, Lianliang Ma, Pascal Pralavorio, Robert Wolff, Xueyao Zhang, <u>Zhi Li</u>

Run: 300571 Event 22/05/20182016-05-01 25/105/2018

> Analysis with 2015 + 2016 dataset

Status of 2015-17 data analysis

• 2 lepton same sign Ot final state (21SS) MVA performance

► Conclusion

Top quark Yukawa coupling $\lambda_t = \sqrt{2} m_t / v \approx 1$: 2 complementary measurements of λ_t :

- > Indirect constraints: ggF, $H \rightarrow \gamma \gamma$ decay
 - Contributions enter from top quark loops by λ_t^2 .
 - Run1 ATLAS+CMS combination measured

 $\kappa_t = \lambda_t / \lambda_t^{SM} = 0.87 \pm 0.15$

- > ttH production, best direct way to measure top quark Yukawa coupling:
 - Tree-level process, cross-section proportional to λ_t^2 .
 - *Run 1 ATLAS+CMS result on signal strength:* $\mu_{ttH} = \sigma_{ttH} / \sigma_{ttH}^{SM} = 2.3^{+0.7} - 0.6$ Obs. (exp.) significance of 4.4σ (2.0 σ)

g 000000

LEPTON ANALYSIS

- ► Use 36.1 fb⁻¹ of p-p collision data from ATLAS experiment in 2015-2016.
- ► Analysis targeting at ttH, $H \rightarrow WW$, $\tau\tau$, ZZ with ≥ 2 (1) light) lepton in their final state.
- > 7 Channels orthogonal in light leptons ($\ell = e, \mu$) and hadronic tau (τ_{had}) multiplicity.
 - High lepton multiplicity requirement reduces background.
 - Jet requirements: $N_{jet} \ge 2$, $N_{b-tag} \ge 1$:
 - 2*l*SS, 2*l*SS + $1\tau_{had}$: $N_{jet} \ge 4$
 - $2lOS + 1\tau_{had}, 1l + 2\tau_{had} : N_{jet} \ge 3$

- \blacktriangleright *ML* + *Ot*: primary sensitive to *H* \rightarrow *WW*.
- ► $ML + \ge 1\tau$: primary sensitive to $H \rightarrow \tau\tau$.

Number of The

Higgs decay modes:

BACKGROUI

Signal region background compositions:

► Irreducible backgrounds: ttW, ttZ, VV

- Estimated from MC
- Validated in 3*l* CRs
- Reducible backgrounds:
 - estimated from data-driven
 - Non-prompt light leptons: from b-hadron decays (ttbar) and photon conversions
 - Electron charge mis-identification (q mis*id*): from $2\ell OS$ ttbar events
 - Fake τ_{had} : from light flavour jets and misidentified electrons

	2ℓSS	3ℓ	4ℓ	$1\ell+2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS+1\tau_{had}$	$3\ell + 1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	tī, tīW, tīZ, VV	tī Z / -	tī	all	tī	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1/1	2	2	10	1
Control regions	-	4	-	-	-	-	-

- Backgrounds are reduced with cut-and-count and boosted decision trees (BDTs) using lepton isolation and track variables.
- Cut-and-count cross checks for 3 most powerful channels ($2\ell SS$, 3ℓ and $2\ell SS + 1\tau_{had}$) compatible.

- \blacktriangleright Binned maximum-likelihood fit is performed in 8 SRs + 4 CRs simultaneously (32 bins).
- > Best-fit signal strength $\mu_{ttH} = 1.6 + 0.5 0.4$, obs. (exp.) significance: 4.1 σ (2.8 σ).
- Cross-section $\sigma_{ttH} = 790^{+230}_{-210}$ fb (expected: 507^{+35}_{-50} fb).
- ► A combination of all channels leading to evidence of ttH productions. (Phys. Rev. D. 97 (2018) 072003)

UNCERTAINTIES

Uncertainty Source	Δ	μ
$t\bar{t}H$ modeling (cross section)	+0.20	-
Jet energy scale and resolution	+0.18	-
Non-prompt light-lepton estimates	+0.15	-
Jet flavor tagging and τ_{had} identification	+0.11	-
$t\bar{t}W$ modeling	+0.10	_
$t\bar{t}Z$ modeling	+0.08	_
Other background modeling	+0.08	_
Luminosity	+0.08	_
$t\bar{t}H$ modeling (acceptance)	+0.08	_
Fake τ_{had} estimates	+0.07	_
Other experimental uncertainties	+0.05	_
Simulation sample size	+0.04	_
Charge misassignment	+0.01	_
Total systematic uncertainty	+0.39	-

- > Systematics model with 315 nuisance parameters.
- > Systematic uncertainties with largest impact on errors on μ_{ttH} are:
 - ttH cross section uncertainty \rightarrow theory.
 - Jet energy scale and resolution.
 - Non-prompt light lepton estimates \rightarrow large contribution of CR statistics.
- \blacktriangleright Largest pull: 31 Non-prompt estimate closure uncertainty \rightarrow deficit in 31 ttbar CR.
- ► All uncertainties well controlled.

TTH MULTILEPTON STRATEGY

- Use 80 fb⁻¹ of p-p collision data from ATLAS experiment in 2015-2017
- 7 orthogonal signal regions (1 new, 1 moved to CR)
- New trigger strategy in 2lSS (Di-Lepton Trigger Only)
 - Response from closure test
 - Negligible effects on fit results
- ► New tight lepton definition:
 - newly optimized work point on:
 - Non-prompt lepton MVA
 - Charge Mis-Id Killer
 - better ttbar rejection
- > Better TauID performance and modeling

Analysis organized channels:

Number of light leptons

New tight lepton definition:

	electron	muon
ID	TightLH && ambiguityType == 0	Loose
Isolation	FixedCutLoose && PromptLeptonVeto < -0.7	FixedCutLoose && PromptLeptonVeto < -0.5
QMisIDMVA	QMisIDMVA > 0.7	-
Impact Parameters	d0 /σ(d0) < 5 && z0sinθ < 0.5mm	d0 /σ(d0) < 3 && z0sinθ < 0.5mm

MVA 2LSS-0TAU

 $2 \times 1D$ event MVA:

Trained versus 2 main backgrounds

• ttH vs ttV (ttZ+ttW)

- ttH vs ttbar (data-driven: non-prompt lepton bkg+electron charge flip bkg)
- Neglecting all other smaller backgrounds such as dibosons

► 9 Input Variables:

• $Max |\eta|$, Pt_{l_1} , M_{lol_1} , ΔR_{loj} , ΔR_{l_1j} , E_T^{miss} , N_{je}

- ► BDT Algorithm:
 - Gradient boosting algorithm (BDTG)
 - Final BDT Discriminant:
 - BDTG = (BDTG ttbar + BDTG ttV)/2
 - Using 6 bins with auto-binning (flat signal)

	Pre-M	VA	sele	ection
--	-------	----	------	--------

•	
Channel	Selection criteria
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b-\text{jets}} \ge 1$
2ℓSS	Two very tight light leptons with $p_T > 20$ GeV
	Same charge light leptons
	Zero medium τ_{had} candidates
	$N_{\rm jets} \ge 4; N_{b-\rm jets} < 3$

DATA/MC AGREEMENT IN 2LSS VALIDATION REGION

MVA TRAINING

Overtraining check for classifier: ttH_dataFakes_even_2lss0tau_initial_BDTG

Correlation Matrix (signal)

Overtraining check for classifier: ttH_ttV_even_2lss0tau_initial_BDTG

Correlation Matrix (background)

BDTScore

MODELING CHECKING IN SR

- > These results are still very preliminary, in particular with not final fake estimates and systematic uncertainties!
- > MVA training is stable and no overtraining observed.
- > Only one large correlation observed (between Pt_{l_1} and $M_{l_0 l_1}$).
- > Data/MC are in good agreements on the distribution of most MVA input variables.

► Evidence of ttH production with 36 fb⁻¹ 13 Tev 2015-2016 data.

Paper published (Phys. Rev. D. 97 (2018) 072003)

Currently studying 80 fb⁻¹ of 2015-2017 data

Expecting discovery of ttH production at 13TeV with Run2 data

2e event with 3 b-tagged & 6 non-b-tagged jets (ATLAS-CONF-2016-058)

Thank you for your attention!

Run: 300571 Event: 905997537 2016-05-31 12:01:03 CEST

BACK UP

SIGNAL AND BKG YIELDS, PRE/POST-FIT

Category	Non-prompt	Fake τ_{had}	q mis-id	tīW	tīZ	Diboson	Other	Total Bkgd.	tīH	Observed
					Pre-fit yields					
2ℓSS	233 ± 39	_	33 ± 11	123 ± 18	41.4 ± 5.6	25 ± 15	28.4 ± 5.9	484 ± 38	42.6 ± 4.2	514
3ℓ SR	14.5 ± 4.3	-	-	5.5 ± 1.2	12.0 ± 1.8	1.2 ± 1.2	5.8 ± 1.4	39.1 ± 5.2	11.2 ± 1.6	61
3ℓ tĪW CR	13.3 ± 4.3	_	_	19.9 ± 3.1	8.7 ± 1.1	< 0.2	4.53 ± 0.92	46.5 ± 5.4	4.18 ± 0.46	56
$3\ell t\bar{t}Z CR$	3.9 ± 2.5	_	_	2.71 ± 0.56	66 ± 11	8.4 ± 5.3	12.9 ± 4.2	93 ± 13	3.17 ± 0.41	107
3ℓ VV CR	27.7 ± 8.7	-	-	4.9 ± 1.0	21.3 ± 3.4	51 ± 30	17.9 ± 6.1	123 ± 32	1.67 ± 0.25	109
3 <i>l tī</i> CR	70 ± 17	-	-	10.5 ± 1.5	7.9 ± 1.1	7.2 ± 4.8	7.3 ± 1.9	103 ± 17	4.00 ± 0.49	85
4ℓ Z-enr.	0.11 ± 0.07	-	-	< 0.01	1.52 ± 0.23	0.43 ± 0.23	0.21 ± 0.09	2.26 ± 0.34	1.06 ± 0.14	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.06 ± 0.03	0.11 ± 0.03	0.20 ± 0.03	0
$1\ell + 2\tau_{had}$	_	65 ± 21	_	0.09 ± 0.09	3.3 ± 1.0	1.3 ± 1.0	0.98 ± 0.35	71 ± 21	4.3 ± 1.0	67
$2\ell SS+1\tau_{had}$	2.4 ± 1.4	1.80 ± 0.30	0.05 ± 0.02	0.88 ± 0.24	1.83 ± 0.37	0.12 ± 0.18	1.06 ± 0.24	8.2 ± 1.6	3.09 ± 0.46	18
$2\ell OS+1\tau_{had}$	_	756 ± 80	_	6.5 ± 1.3	11.4 ± 1.9	2.0 ± 1.3	5.8 ± 1.5	782 ± 81	14.2 ± 2.0	807
$3\ell+1\tau_{had}$	_	0.75 ± 0.15	_	0.04 ± 0.04	1.38 ± 0.24	0.002 ± 0.002	0.38 ± 0.10	2.55 ± 0.32	1.51 ± 0.23	5
					Post-fit yields					
2ℓSS	211 ± 26	_	28.3 ± 9.4	127 ± 18	42.9 ± 5.4	20.0 ± 6.3	28.5 ± 5.7	459 ± 24	67 ± 18	514
3ℓ SR	13.2 ± 3.1	-	-	5.8 ± 1.2	12.9 ± 1.6	1.2 ± 1.1	5.9 ± 1.3	39.0 ± 4.0	17.7 ± 4.9	61
3ℓ tĪW CR	11.7 ± 3.0	_	_	20.4 ± 3.0	8.9 ± 1.0	< 0.2	4.54 ± 0.88	45.6 ± 4.0	6.6 ± 1.9	56
$3\ell t\bar{t}Z CR$	3.5 ± 2.1	-	-	2.82 ± 0.56	70.4 ± 8.6	7.1 ± 3.0	13.6 ± 4.2	97.4 ± 8.6	5.1 ± 1.4	107
3ℓ VV CR	22.4 ± 5.7	_	_	5.05 ± 0.94	22.0 ± 3.0	39 ± 11	18.1 ± 5.9	106.8 ± 9.4	2.61 ± 0.82	109
3 <i>l tī</i> CR	56.0 ± 8.1	_	_	10.7 ± 1.4	8.1 ± 1.0	5.9 ± 2.7	7.1 ± 1.8	87.8 ± 7.9	6.3 ± 1.8	85
4ℓ Z-enr.	0.10 ± 0.07	_	_	< 0.01	1.60 ± 0.22	0.37 ± 0.15	0.22 ± 0.10	$2.29 \hspace{0.2cm} \pm \hspace{0.2cm} 0.28 \hspace{0.2cm}$	1.65 ± 0.47	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.07 ± 0.03	0.11 ± 0.03	0.32 ± 0.09	0
1ℓ + $2\tau_{had}$	_	58.0 ± 6.8	-	0.11 ± 0.11	3.31 ± 0.90	0.98 ± 0.75	0.98 ± 0.33	63.4 ± 6.7	6.5 ± 2.0	67
$2\ell SS+1\tau_{had}$	1.86 ± 0.91	1.86 ± 0.27	0.05 ± 0.02	0.97 ± 0.26	1.96 ± 0.37	0.15 ± 0.20	1.09 ± 0.24	7.9 ± 1.2	5.1 ± 1.3	18
$2\ell OS+1\tau_{had}$	_	756 ± 28	_	6.6 ± 1.3	11.5 ± 1.7	1.64 ± 0.92	6.1 ± 1.5	782 ± 27	21.7 ± 5.9	807
$3\ell + 1\tau_{had}$	_	0.75 ± 0.14	_	0.04 ± 0.04	1.42 ± 0.22	0.002 ± 0.002	0.40 ± 0.10	$2.61 \hspace{0.2cm} \pm \hspace{0.2cm} 0.30 \hspace{0.2cm}$	2.41 ± 0.68	5

EPS RESULTS

Channel	Best fit $\mu_{t\bar{t}H}$	Best fit $\mu_{t\bar{t}H}$	Observed (expected)
	(observed)	(expected)	significance
$2\ell OS + 1\tau_{had}$	$1.7^{+1.6}_{-1.5}$ (stat.) $^{+1.4}_{-1.1}$ (syst.)	$1.0^{+1.5}_{-1.4}$ (stat.) $^{+1.2}_{-1.1}$ (syst.)	$0.9\sigma~(0.5\sigma)$
$1\ell + 2\tau_{had}$	$-0.6 {}^{+1.1}_{-0.8}$ (stat.) ${}^{+1.1}_{-1.3}$ (syst.)	$1.0^{+1.1}_{-0.9}$ (stat.) $^{+1.2}_{-1.1}$ (syst.)	$-(0.6\sigma)$
4ℓ	$-0.5 {+1.3}_{-0.8}$ (stat.) ${+0.2}_{-0.3}$ (syst.)	$1.0^{+1.7}_{-1.2}$ (stat.) $^{+0.4}_{-0.2}$ (syst.)	$-(0.8\sigma)$
$3\ell + 1\tau_{had}$	$1.6^{+1.7}_{-1.3}$ (stat.) $^{+0.6}_{-0.2}$ (syst.)	$1.0^{+1.5}_{-1.1}$ (stat.) $^{+0.4}_{-0.2}$ (syst.)	$1.3\sigma~(0.9\sigma)$
$2\ell SS+1\tau_{had}$	$3.5_{-1.2}^{+1.5}$ (stat.) $^{+0.9}_{-0.5}$ (syst.)	$1.0^{+1.1}_{-0.8}$ (stat.) $^{+0.5}_{-0.3}$ (syst.)	$3.4\sigma (1.1\sigma)$
3ℓ	$1.8^{+0.6}_{-0.6}$ (stat.) $^{+0.6}_{-0.5}$ (syst.)	$1.0^{+0.6}_{-0.5}$ (stat.) $^{+0.5}_{-0.4}$ (syst.)	$2.4\sigma (1.5\sigma)$
2ℓSS	$1.5^{+0.4}_{-0.4}$ (stat.) $^{+0.5}_{-0.4}$ (syst.)	$1.0^{+0.4}_{-0.4}$ (stat.) $^{+0.4}_{-0.4}$ (syst.)	$2.6\sigma(1.9\sigma)$
Combined	$1.6^{+0.3}_{-0.3}$ (stat.) $^{+0.4}_{-0.3}$ (syst.)	$1.0^{+0.3}_{-0.3}$ (stat.) $^{+0.3}_{-0.3}$ (syst.)	$4.1\sigma~(2.8\sigma)$

CUTFLOW FOR 2L27 CHANNEL

	ttH	top+X	$tt\gamma$	rare	VV	ttW	ttZ (NLO)	Z+jets	Sum bkg
Input	$\textbf{3.69} \pm \textbf{0.27}$	$\textbf{31.05} \pm \textbf{2.97}$	0.55 ± 0.20	0.13 ± 0.03	$\textbf{50.45} \pm \textbf{1.17}$	$\textbf{0.30} \pm \textbf{0.07}$	$\textbf{4.17} \pm \textbf{0.19}$	527.93 ± 98.79	614.57 ± 98.84
CutBlind	$\textbf{3.69} \pm \textbf{0.27}$	$\textbf{31.05} \pm \textbf{2.97}$	0.55 ± 0.20	0.13 ± 0.03	$\textbf{50.45} \pm \textbf{1.17}$	$\textbf{0.30} \pm \textbf{0.07}$	$\textbf{4.17} \pm \textbf{0.19}$	$\textbf{527.93} \pm \textbf{98.79}$	614.57 ± 98.84
CutEventClean	$\textbf{3.69} \pm \textbf{0.27}$	$\textbf{31.05} \pm \textbf{2.97}$	0.55 ± 0.20	0.13 ± 0.03	$\textbf{50.45} \pm \textbf{1.17}$	$\textbf{0.30} \pm \textbf{0.07}$	$\textbf{4.17} \pm \textbf{0.19}$	$\textbf{527.93} \pm \textbf{98.79}$	614.57 ± 98.84
CutTrigger	$\textbf{3.40} \pm \textbf{0.27}$	$\textbf{27.20} \pm \textbf{2.82}$	0.47 ± 0.19	0.13 ± 0.03	$\textbf{46.49} \pm \textbf{1.15}$	$\textbf{0.29} \pm \textbf{0.07}$	$\textbf{3.89} \pm \textbf{0.19}$	490.64 ± 95.77	569.10 ± 95.82
CutNLep2	$\textbf{3.36} \pm \textbf{0.27}$	$\textbf{27.20} \pm \textbf{2.82}$	0.47 ± 0.19	0.13 ± 0.03	$\textbf{46.12} \pm \textbf{1.15}$	$\textbf{0.28} \pm \textbf{0.07}$	$\textbf{3.79} \pm \textbf{0.19}$	490.64 ± 95.77	568.62 ± 95.82
CutLep0Pt	$\textbf{3.32} \pm \textbf{0.27}$	$\textbf{25.98} \pm \textbf{2.75}$	$\textbf{0.47} \pm \textbf{0.19}$	0.13 ± 0.03	$\textbf{45.41} \pm \textbf{1.15}$	$\textbf{0.27} \pm \textbf{0.07}$	$\textbf{3.78} \pm \textbf{0.19}$	$\textbf{502.18} \pm \textbf{95.26}$	$\textbf{578.22} \pm \textbf{95.31}$
CutLep1Pt	$\textbf{2.73} \pm \textbf{0.20}$	$\textbf{20.37} \pm \textbf{2.40}$	0.34 ± 0.18	0.11 ± 0.03	$\textbf{41.79} \pm \textbf{1.09}$	$\textbf{0.24} \pm \textbf{0.06}$	$\textbf{3.38} \pm \textbf{0.18}$	$\textbf{480.16} \pm \textbf{92.96}$	546.40 ± 92.99
CutTrigMatch	$\textbf{2.66} \pm \textbf{0.20}$	$\textbf{18.58} \pm \textbf{2.31}$	0.33 ± 0.18	0.11 ± 0.03	$\textbf{40.86} \pm \textbf{1.09}$	$\textbf{0.24} \pm \textbf{0.06}$	$\textbf{3.29} \pm \textbf{0.17}$	$\textbf{489.77} \pm \textbf{92.41}$	553.18 ± 92.44
CutTauBTagVeto	$\textbf{2.43} \pm \textbf{0.19}$	9.69 ± 1.74	0.24 ± 0.17	0.09 ± 0.02	$\textbf{38.90} \pm \textbf{1.08}$	$\textbf{0.16} \pm \textbf{0.06}$	$\textbf{2.96} \pm \textbf{0.17}$	$\textbf{485.36} \pm \textbf{92.39}$	537.40 ± 92.42
CutNTau2	$\textbf{2.43} \pm \textbf{0.19}$	$\textbf{9.69} \pm \textbf{1.74}$	0.24 ± 0.17	0.09 ± 0.02	$\textbf{38.86} \pm \textbf{1.08}$	$\textbf{0.16} \pm \textbf{0.06}$	$\textbf{2.95} \pm \textbf{0.17}$	$\textbf{485.36} \pm \textbf{92.39}$	537.35 ± 92.42
CutZVeto	$\textbf{2.24} \pm \textbf{0.18}$	$\textbf{9.53} \pm \textbf{1.74}$	0.24 ± 0.17	0.08 ± 0.02	$\textbf{7.35} \pm \textbf{0.87}$	$\textbf{0.14} \pm \textbf{0.05}$	$\textbf{2.11} \pm \textbf{0.15}$	84.79 ± 53.64	104.24 ± 53.67
CutNJet_ge2	$\textbf{1.97} \pm \textbf{0.18}$	$\textbf{4.76} \pm \textbf{1.35}$	0.00 ± 0.00	0.08 ± 0.02	1.91 ± 0.11	$\textbf{0.07} \pm \textbf{0.04}$	$\textbf{1.87} \pm \textbf{0.14}$	4.17 ± 1.10	12.85 ± 1.75
CutNBJet_ge1	1.68 ± 0.18	$\textbf{4.29} \pm \textbf{1.39}$	0.00 ± 0.00	0.06 ± 0.02	0.13 ± 0.03	$\textbf{0.06} \pm \textbf{0.04}$	$\textbf{1.51} \pm \textbf{0.13}$	0.22 ± 0.15	6.28 ± 1.41
CutNTauTight_ge1	1.68 ± 0.18	$\textbf{4.29} \pm \textbf{1.39}$	0.00 ± 0.00	0.06 ± 0.02	0.13 ± 0.03	$\textbf{0.06} \pm \textbf{0.04}$	$\textbf{1.51} \pm \textbf{0.13}$	0.22 ± 0.15	6.28 ± 1.41
CutMtt01	$\textbf{1.52} \pm \textbf{0.18}$	$\textbf{3.48} \pm \textbf{1.32}$	0.00 ± 0.00	0.04 ± 0.02	0.08 ± 0.02	$\textbf{0.06} \pm \textbf{0.03}$	1.13 ± 0.11	0.10 ± 0.09	$\textbf{4.90} \pm \textbf{1.33}$

measurement from data after SR selections using leptons passing/failing tight ID

/attachments/1646281/2631240/PLV Fakes 080518.pdf https://indico.cern.ch/event/727984/contributions/299

let's talk about fakes... (in 2LSS & 3L)

measurement from control regions

PROMPT LEPTON MVA

Variable	PromptLeptonIso	PromptLeptonVeto
N _{track} in track jet	1	1
sv1_jf_ntrkv	 ✓ 	×
$IP2log(P_b/P_{light})$	 ✓ 	×
$IP3log(P_b/P_{light})$	 ✓ 	×
$p_T(lepton)/p_T(track jet)$		X
$\Delta R(lepton, track jet)$	1	1
$\Sigma E_T (\Delta R < 0.3)/p_T$	1	1
$\Sigma p_T (\Delta R < 0.3)/p_T$	1	1
rnnip	X	1
DL1mu	X	1
p_T^{rel}	×	1
Track $p_T(lepton)/p_T(track jet)$	×	 ✓

Figure 1: Comparison of the input variables included in the PromptLeptonIso and PromptLeptonVeto N

Figure 2: ROC curves from PromptLeptonVeto and PromptLeptonIso, as well as the performance of FixedCut-Tight working point, for electrons (left) and muons (right).

DI I.	Variable	Description
ΓLI.	N _{track} in track jet	Number of tracks collected by the track jet
	IP2 $\log(P_b/P_{\text{light}})$	Log-likelihood ratio between the b and light jet hypotheses with the IP2D algorithm
	IP3 $\log(P_b/P_{\text{light}})$	Log-likelihood ratio between the b and light jet hypotheses with the IP3D algorithm
	N_{TrkAtVtx} SV + JF	Number of tracks used in the secondary vertex found by the SV1 algorithm
		in addition to the number of tracks from secondary vertices found by the JetFitter algorithm with at
	$p_T^{\text{lepton}}/p_T^{\text{track jet}}$	The ratio of the lepton p_T and the track jet p_T
	ΔR (lepton, track jet)	ΔR between the lepton and the track jet axis
	p_T VarCone30/ p_T	Lepton track isolation, with track collecting radius of $\Delta R < 0.3$
	E_T TopoCone30/ p_T	Lepton calorimeter isolation, with topological cluster collecting radius of $\Delta R < 0.3$
		•

Table 6: A table of the variables used in the training of PromptLeptonIso.

The PromptLeptonIso distributions for electrons and muons are shown in Figure 1.

DI V.	Variable	Description
ΓLV.	N _{track} in track jet	Number of tracks collected by the track jet
	rnnip	Recurrent Neural Network with additional impact parameter information of tracks insi
$\begin{array}{c} \text{DL1}\\ p_T^r\\ \text{AVAs.} & p_T^{\text{track leptor}}\\ \Delta R (\text{lepton})\\ p_T \text{VarCo}\\ E_T \text{TopoCo} \end{array}$	DL1mu	DL1 (deep learning tagger) extended with Soft Muon Tagging information
	p_T^{rel}	lepton p_T projected on the track jet direction
	$p_T^{ m track\ lepton}/p_T^{ m track\ jet}$	The ratio of the track lepton p_T and the track jet p_T
	ΔR (lepton, track jet)	ΔR between the lepton and the track jet axis
	$p_T VarCone 30/p_T$	Lepton track isolation, with track collecting radius of $\Delta R < 0.3$
	E_T TopoCone30/ p_T	Lepton calorimeter isolation, with topological cluster collecting radius of ΔR

A lepton MVA has been developed to better reject non-prompt leptons than standard cut based selections based upon impact parameter, isolation and PID.

Prompt lepton veto (PLV) is a successor of PLI and uses more advanced bTagging algorithms as input

