Search for the Higgs boson at

D0, CMS and ATLAS

Betty CALPAS

Seminar IPHC Strasbourg

W Z

1121

1. Introduction

2. Search for ZH in b jets channel at D0

3. Search for WH in hadronic taus channel at CMS

4. Search for ttH in mutileptonic channels at ATLAS

5. Combined ATLAS and CMS run 1 Higgs results

6. Summary

1. Introduction

1.a The Higgs boson particle

- The Standard Model (SM *) of particle physics, developed in the 20th century, describes elementary particles and their interactions.
- The discovery of the The Higgs boson particle (a quantum excitation of the Higgs field which gives mass to particles) in 2012 at the LHC, is an epilogue to a search started 35 years ago. It top a remarkable list of experimentally confirmed SM predictions.
- UP CHARM TOP GLUON **HIGGS BOSON** mass 2,3 MeV/c2 1,275 GeV/c2 173,07 GeV/c2 0 126 GeV/c2 charge U g 0 14 RK DOWN PHOTON STRANGE BOTTOM 4.8 MeV/c2 95 MeV/c² 4.18 GeV/c2 0 S G A 1/2 U G ELECTRON MUON TAU **Z BOSON** E 0,511 MeV/c2 105,7 MeV/c2 1,777 GeV/c2 91,2 GeV/c2 В -1 0 1/2 1/2 S 0 ELECTRON MUON TAU W BOSON 0 Ν NEUTRINO <0.17 MeV/c2 <15.5 MeV/c 80,4 GeV/c2 <2.2 eV/c Ν S ±1 S

(*)

- Several experiments have search for the Higgs boson:
 - LEP: CERN, e⁺e⁻, 100 GeV, 1989-2000.
 - Tevatron: FERMILAB (CDF, D0), pp^{bar}, 2 TeV, 1983-2011.
 - LHC: CERN (CMS, ATLAS), pp, 13 TeV, 2009-present.

1.b D0, CMS and ATLAS detectors

1.c Main components of particle physics detector

Each particle type has its own signature in the detector.

 $10^{-1} = pp \rightarrow tH (NLO QCD)$

10

 $pp \rightarrow qqH (NNLO QCD + NLO W)$

pp → WH (NNLO QCD + NLO EW

 $pp \rightarrow bbH$ (NNLO QCD in 5FS, NLO QCD in 4FS)

124

126

pp → ZH (NNLO QCD + NLO EW pp → ttH (NLO QCD + NLO EV

Seminar, IPHC, Strasbourg, 25/05/2018

128 13 M_H [GeV]

130

10

10

1

100

PP->tiH (N

125

150

175

200

225

300

9H (NNLO QCD + NLO EW)

(NNLO QCD + NLO EW)

250

275

m_H [GeV]

1.e Technics used to identify the Higgs boson decay products

• Traditional

- **Cut and Count (C&C):** cuts are apply independently on different variables.

- Multivariable (MVA) exploit the variables correlation
 - Boosted decision tree (BDT), random forest (RF) (*),

Deep Neural Network: combined experimental variables into a single discriminant.

- Matrix element method: combined experimental and theoretical variables into a single discriminant.

(*)

2. Search for ZH in b jets channel at D0

2.a signal and backgrounds (bkg)

• Signal (simulation)

• Electroweak bkg (simulation)

Z+jets, dibosons (WW, WZ, ZZ), tt_{bar}

• Multijet bkg (data)

jets misidentified as leptons

2.b Event selection (4.2 fb⁻¹)

- >= 2 electrons/muons ; 1 Z boson ; >=1 b jet ; other cuts to veto bkg
- Final discriminant: MVA (RF)

2.c Results 4.2 fb⁻¹: Phys. Rev. Lett. 105, 251801 (2010)

2.d Updated results 9.7 fb⁻¹: Phys. Rev. D88 n° 5, 052010 (2013)

95% CL limit VS Higgs mass

M_H (GeV)	90	95	100	105	110	115	120	125	130	135	140	145	150
Expected	2.6	2.7	2.8	3.0	3.4	3.7	4.3	5.1	6.6	8.7	12	18	29
Observed	1.8	2.3	2.2	3.0	3.7	4.3	6.2	7.1	12	16	19	31	53

3. Search for WH in hadronic taus channel at CMS

3.a signal and backgrounds

• Signal (simulation)

• Irreducible bkg (simulation)

WZ, ZZ

• Reducible bkg (data)

W/Z+jets/ γ , tt_{bar}, multijet

3.b Event selection

- 1 muon or electron ; 2 hadronic tau ; other cuts to veto bkg
- Final discriminant: visible mass of the 2 taus

3.c) Combined results 24.6 fb⁻¹: JHEP 05, (2014) 104 **EVIDENCE**

3.d) Updated results 35.9 fb⁻¹: Phys. Lett. B 779 (2018) 283 OBSERVATION

Seminar, IPHC, Strasbourg, 25/05/2018

B. Calpas

4. Search for ttH in mutileptonic channels at ATLAS

4.a Signals

4.c Events selection

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS+1\tau_{had}$	$3\ell + 1\tau_{had}$
Light lepton	2T*	1L*, 2T*	2L, 2T	1T	2T*	$2L^{\dagger}$	$1L^{\dagger}, 2T$
$ au_{ m had}$	0M	0M	_	1 T , 1 M	1 M	1 M	1 M
$N_{\rm jets}, N_{b-\rm jets}$	\geq 4, = 1, 2	$\geq 2, \geq 1$	$\geq 2, \geq 1$	\geq 3, \geq 1	\geq 4, \geq 1	\geq 3, \geq 1	$\geq 2, \geq 1$

4.d Main keys of the analysis

• Efficient lepton identification cuts

	е			μ			
	$L L^{\dagger}$	L*	Т	T*	L	L^{\dagger}	L*/T/T*
Isolation	No	Y	es		No		Yes
Non-prompt lepton BDT	No Yes		No		Yes		
Identification	Loose	Loose Tight		Loose			
Charge misassignment veto BDT	No		Yes		No		
Transverse impact parameter significance, $ d_0 /\sigma_{d_0}$			< 3				
Longitudinal impact parameter, $ z_0 \sin \theta $	< 0.5 n				am		

• Tau discriminator

BDT: calorimeter- and tracking-based variables.

Medium efficiencies: 55% (40%) for 1 (3) prong tau.

• B jet discriminator

BDT: impact parameter, secondary vertices.

Medium efficiency: 70%.

BDT input: dist(lepton, jet), btag info, calo- and

track-iso variables, nb track etc...

4.f Results, 36.1 fb⁻¹: Phys. Rev. D. 97 (2018) 072003 EVIDENCE

ATLAS combined channels

- 7 channels
- Observed (expected) significance: 4.1 (2.8) σ
- **Observed (expected) best-fit value:** $1.6_{-0.4}^{+0.5}$

• Measured (SM) ttH cross section:

CMS combined channels compatible w/ ATLAS

- 6 channels (no 2lOS+1τ)
- Observed (expected) significance: 3.2 (2.8) σ
- **Observed best-fit value:** 1.23^{+0.45}_{-0.43}

 $(1.00 + 0.4)_{-0.4}$

 (507^{+35}_{-50}) fb⁻¹

 790^{+230}_{-210}

4.g ttH multilepton prospects

Uncertainty Source	Δμ			
$t\bar{t}H$ modelling	+0.20	-0.11		
Jet energy scale and resolution	+0.17	-0.15		
Non-prompt light lepton estimates	+0.16	-0.16		
tTW modelling	+0.11	-0.10		
Luminosity	+0.11	-0.09		
tīZ modelling	+0.10	-0.09		
Other background modelling	+0.11	-0.10		
Jet flavour tagging and τ_{had} identification	+0.07	-0.06		
Fake τ_{had} estimates	+0.05	-0.06		
Charge misassignment	+0.04	-0.04		
Other experimental uncertainties	+0.05	- <mark>0.0</mark> 4		
MC statistics	+0.04	-0.04		
Total systematic uncertainty	+0.39	-0.30		

- New simulation generator
- Particle flow new technic (use at CMS):
 - combined information from all subdetectors
- More statistic
- With more statistic, we can used data, or improve theory uncertainty
- Improvement of lepton BDT identification

• ...

4.h Combined ttH searches results EVIDENCE

- $H \rightarrow ZZ$
- $H \rightarrow \gamma \gamma$
- $H \rightarrow bb$
- $H \rightarrow multilepton$

- Observed (expected) significance: 4.2 (3.8) σ
- Observed best-fit value: 1.17 ± 0.19
- Measured (SM) ttH cross section: 590 $^{+160}_{-150}(507^{+35}_{-50})$ fb⁻¹

4.i Expected improvement with run 2 data

Considering all current analyses with the same level of systematics without any improvements, 5σ can be reach with 80 fb⁻¹.

4.j CMS ttH searches: arXiv:1804.02610v1 Apr. 2018 OBSERVATION

5. Combined ATLAS and CMS run 1 Higgs results

ATLAS + CMS run 1 combination results: JHEP08 (2016) 045

(*)

- Production: H, qqH, W/ZH, ttH
- Decay: bb, WW, ZZ, $\tau\tau,\gamma\gamma,\mu\mu$
- 50 fb⁻¹ (7 + 8 TeV)
- New production and decay observation (**)
- Signal yield compare to SM: 1.09 ± 0.11 (***)
- Mass Higgs (H $\rightarrow\gamma\gamma$, H \rightarrow ZZ) = 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV (*)

(**)	Significance	
Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \rightarrow \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

• Production H and decay WW, ZZ, γγ already observe.

Compatibility with SM

6. Summary

- The Higgs boson search has been a challenging topic involving several collaborations (1).
- Before it's discovery announcement in 2012 by ATLAS and CMS experiment (2).
- Current Higgs searches and study focus on measuring it's properties with more accuracy (3).

(2)

Back up

Higgs boson with a mass of 125.09 GeV

Production	Cross section [pb]			Decay mode	Branching fraction [%]		
process	$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$			$H \rightarrow bb$	57.5 ± 1.9		
<i>gg</i> F	15.0 ± 1.6	19.2 ± 2.0	-	$H \rightarrow WW$	21.6 ± 0.9		
VBF	1.22 ± 0.03	1.58 ± 0.04		$H \rightarrow gg$	8.56 ± 0.86		
WH	0.577 ± 0.016	0.703 ± 0.018		$H \to \tau \tau$	6.30 ± 0.36		
ZH	0.334 ± 0.013	0.414 ± 0.016		$H \rightarrow cc$	2.90 ± 0.35		
[ggZH]	0.023 ± 0.007	0.032 ± 0.010		$H \rightarrow ZZ$	2.67 ± 0.11		
ttH	0.086 ± 0.009 0	0.129 ± 0.014		$H ightarrow \gamma \gamma$	0.228 ± 0.011		
				$H \rightarrow Z\gamma$	0.155 ± 0.014		
				$H ightarrow \mu \mu$	0.022 ± 0.001		

Signal fraction

The signal-to-background ratio

Electron charge mis ID BDT input variables (tight WP: 95% electron eff, and 6% electron with mis charge ID):

- electron pt, η,
- track curvature significance (ratio of the electric charge to the track momentum divided by the estimated uncertainty in the measurement) and its transverse impact parameter times the electric charge
- cluster width along the azimuthal direction
- quality of the matching between the track and the cluster, in terms of both energy/momentum and azimuthal position.

Table 6: Variables used in the multivariate analysis (denoted by \times) for the 2 ℓ SS, 3 ℓ , 4 ℓ (Z-enriched category), 1 ℓ +2 τ _{had}, 2 ℓ SS+1 τ _{had} and 2 ℓ OS+1 τ _{had} channels. For 2 ℓ SS and 2 ℓ SS+1 τ _{had}, lepton 0 and lepton 1 are the leading and subleading leptons, respectively. For 3 ℓ , lepton 0 is the lepton with charge opposite to that of the same-charge pair, while the same-charge leptons are labeled with increasing index (lepton 1 and lepton 2) as p_{T} decreases. The best Z-candidate dilepton invariant mass is the mass of the dilepton pair closest to the Z boson mass. The variables also used in the cross-check analyses are indicated by a *.

	Variable	2ℓSS	3ℓ	48	1ℓ+2Thad	2ℓSS+1Thad	2ℓOS+17had
ties	Leading lepton pT		×				
	Second leading lepton pT	×	×			×	
	Third lepton p_T		×				
	Dilepton invariant mass (all combinations)	×	×*				×
	Three-lepton invariant mass		×				
2	Four-lepton invariant mass			×			
010	Best Z-candidate dilepton invariant mass			×			
H H	Other Z-candidate dilepton invariant mass			×			
ž	Scalar sum of all leptons pT			×			×
2	Second leading lepton track isolation					×	
	Maximum n (lepton 0, lepton 1)	×				×	
	Lepton flavor	×*	×*				
	Lepton charge		×				
	Number of jets	X*	X*		×	×	×
	Number of b-tagged jets	×*	×*		×	×	×
	Leading jet pr						×
	Second leading jet nr		×			×	
8	Leading h-tagged jet pr		Ŷ			A-	
E.	Scalar sum of all jets n=		Ŷ		×	×	×
ĝ	Scalar sum of all h-tagged jets pr		<u> </u>		-	<u> </u>	Ŷ
E D	Has leading jet highest h-tagging weight?		~				<u>^</u>
-Pe	h-tagging weight of leading iet		÷.				
	h-tagging weight of second leading jet		÷.			~	
	b tagging weight of third leading jet		<u> </u>			0	
	Beaudorapidity of fourth leading jet					÷	
	Leading market of rout in reading jet				~		~
	Second leading root pr				÷		^
2	Di-m invariant mass				÷		
F *	Investent mose mail furthert lenten				^		
	AP(lanton 0, lanton 1)		~			~	
	AR(lepton 0, lepton 2)		÷.				
	A P(lepton 0, repron 2)		0				
	A P(lepton 0, leading ist)	× .	Č.				
22	AR(lepton 0, leading jet)		÷.			~	
Š.	A P(lepton 0, closest b-jet)		<u> </u>				
513	AR(lepton 1, closest jet)	× .	÷.				
臣	Smellest A P(lenten_iat)		×				
-4	Smallest A P(lepton, jet)		*				×
율	Smallest AR(lepton, b-tagged jet)						×
×.	A P(lastes 0, z.)						×
	AR(lepton 0, Thad)						×
	AR(lepton 1, Thad)						×
	Minimum ΔR between all jets				×		
	Ar between two leading jets					×	
100	Missing transverse momentum ET	×		×			
1E	Azimuthal separation $\Delta \phi$ (leading jet, p_1^{mass})		×				
	Transverse mass leptons $(H/Z \text{ decay}) - \overline{p_T^{\text{mass}}}$			×			
	Pseudo-Matrix-Element			×			

For a specific production process and decay mode $i \rightarrow H \rightarrow f$,

$$\mu_i^f = \frac{\sigma_i \cdot \mathbf{B}^f}{(\sigma_i)_{\mathrm{SM}} \cdot (\mathbf{B}^f)_{\mathrm{SM}}} = \mu_i \cdot \mu^f$$

• Test statistic q as a function of μ .

• To quantify the ttH significance, we compute the probability of the bkg-only hypothesis (p-value) as the tail integral of the test statistic using the overall combination evaluated at $\mu = 0$ under the asymptotic approximation.

- **2.b** Event selection (4.2 fb⁻¹)
- At least 2 electrons in the calorimeter:

• To increase the Z acceptance (17%) the e selection is extended to include events with 1 e^{icr}:

• Z boson selection:

• B jet selection:

• Multijet selection:

- in CC $|\eta| < 1.1$ or EC $|1.5 < |\eta| < 2.5$
- **p**_T > 15 GeV; isolation < 0.1; Emfrac > 0.95; 1 track
- cuts based on calorimeter shower shape
- NN variable (EM and CPS energy deposit, track isolation...).
- ICR, Et>10 GeV
- ≥ 1 track with $p_T \ge 20$ GeV
- medium NN_{ier}
- other cuts depending on the tau type.

- 60 <Mee < 150 GeV.

- >= 2 jets in $|\eta|$ < 2.5 , coming from the PV, with at least 1 b jets
- Δ**R**(jet, e)>0.5
- leading (subleading) jet $p_T > 20$ (15) GeV.

invert electron selection cuts:

- isolation and shower shape for e
- NN_{icr} for e^{icr} .

3.b) Event selection

• 1 Muon

• 2 hadronic tau

- 2 hadronic tau with opposite charge
- Et miss > 20 GeV
- tt_{par} veto: No b tag jet with pT > 20 GeV
- $Z{\rightarrow}\mu\mu$ veto: no other muon passing the selection criteria
- Z $\rightarrow \tau \tau$ veto: pT($\tau 1, \tau 2$) > 50 GeV ; M(μ, τ_h^{OS}) > 80 GeV ; Mt (μ , Et miss) >20 GeV
- electron veto

• Additional cuts

Random Forest (RF)

The RF combines several trees. Each is trained to separate signal from background using a randomly selected subsample of simulated events. In addition, a random subset of input variables is considered for each decision in each tree. The RF output is a performance- weighted average of the output from each decision tree.

Variables selected for the RF

- transverse momenta and the invariant mass of the bjets;
- angular differences within and between the dijet and dilepton;
- the angle between the proton beam and the Z boson candidate;
- composite kinematic variables: the scalar sum of the transverse momenta of the leptons and jets...

Limit calculation at D0

• The upper limit on the Higgs production cross section is calculated at 95% CL with a Poisson log-likelihood ratio (LLR) as test statistics: $LLR = -2\ln P(N|H_{S+R}) / P(N|H_{R})$:

 H_{s+B} and H_{B} : test hypotheses of background with and without signal

N : number of events

P : poissonian pdf of N: $P = e^{-\mu} \mu^N / N!$

- Profile likelihood method: LLR is minimized wrt the nuisance parameters.
- Confidence level:
 - $CL_{S+B} = p(LLR_{S+B} > LLR_{Obs} | H_{S+B})$ $CL_{B} = P(LLR_{B} > LLR_{Obs} | H_{B})$ $CL_{S} = CL_{S+B} / CL_{B}$
- A signal R = $(\sigma_{Obs} \times BR) / (\sigma_{Obs} \times BR)_{SM}$ is

excluded at 95% CL if $CL_s(R) = 0.05$.