TrackML: Tracking Machine Learning challenge

<u>David Rousseau</u> (LAL-Orsay, U Paris-Saclay) (<u>rousseau@lal.in2p3.fr</u>),

with Paolo Calafiura, Steven Farrell, Heather Gray (LBNL-Berkeley), Jean-Roch Vlimant (CalTech), Yetkin Yilnaz (LAL), Cécile Germain (LAL/LRI), Isabelle Guyon (ChaLearn, U Paris Saclay), Vincenzo Innocente, Andreas Salzburger (CERN), Tobias Golling, Moritz Kiehn, Sabrina Amrouche (U Geneva), Vava Gligorov (LPNHE-Paris), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex)

Special thanks for the preparation of the slides: Andreas Salzburger, Jean-Roch Vlimant

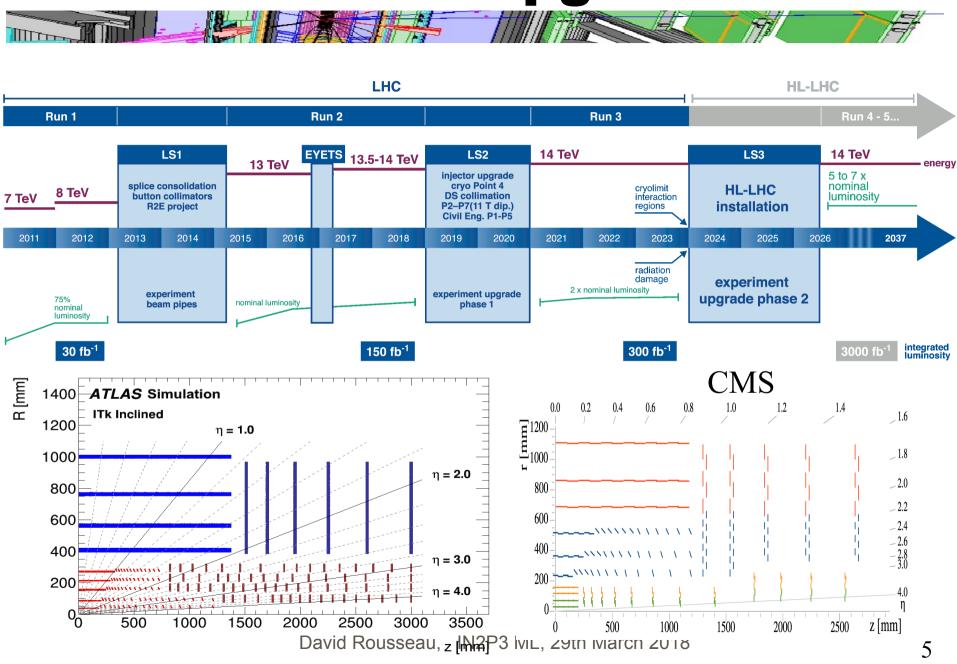
IN2P3 ML workshop, CC-Lyon, 29th Mar 2018

Who are we?

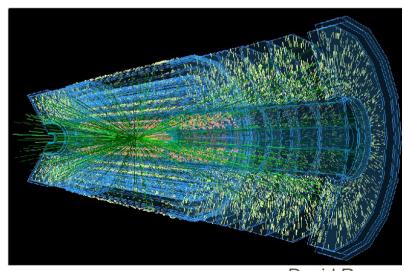
Paolo Calafiura, Steven Farrell, Heather Gray (LBNL-Berkeley), Jean-Roch Vlimant (CalTech), Cécile Germain (LAL/LRI U Paris Saclay), Isabelle Guyon (ChaLearn, U Paris Saclay), David Rousseau, Yetkin Yilnaz (LAL Orsay U Paris Saclay), Vincenzo Innocente, Andreas Salzburger (CERN), Tobias Golling, Moritz Kiehn, Sabrina Amrouche (U Geneva), Vava Gligorov (LPNHE-Paris), Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex)

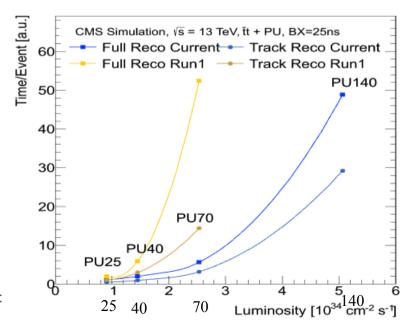
- □ Particle physics tracking experts from three large CERN experiments on the LHC ATLAS, CMS and LHCb
- Machine Learning scientists
- Some of us have organised challenges on Kaggle
 - The <u>Higgs Machine Learning challenge</u> 2014 (<u>proceedings of NIPS 2014 workshop</u>)
 - o Flavour of Physics challenge 2015
- We have been preparing this new challenge since 3 years...

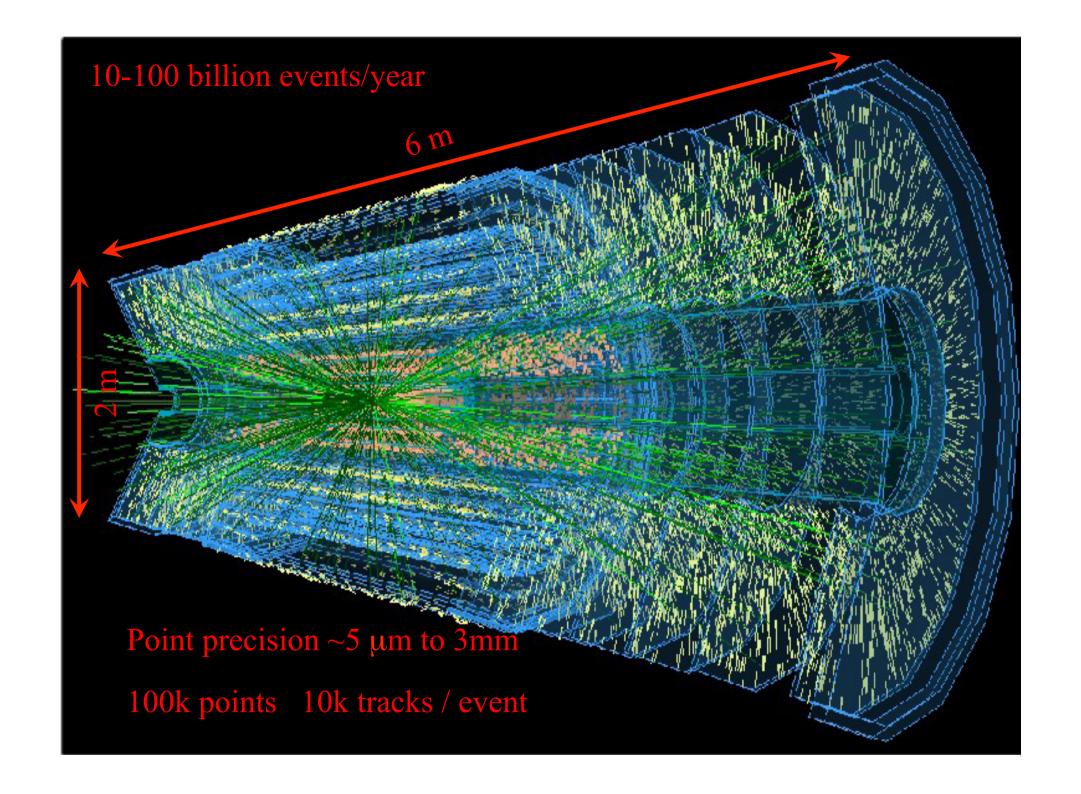
Partners



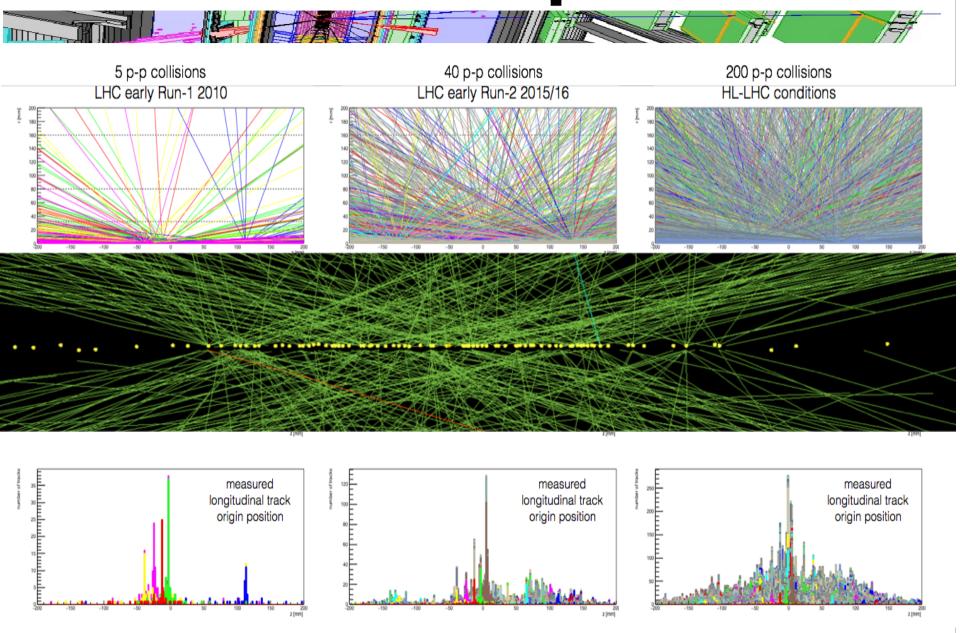
LHC tracking




HL-LHC upgrade


Tracking crisis

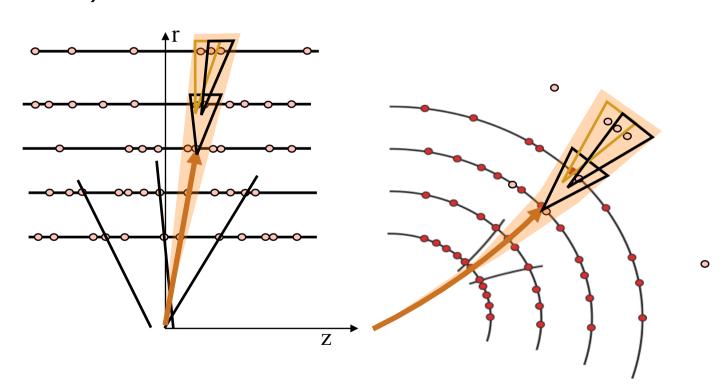
- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- High Luminosity-LHC perspective : increased rate of parasitic collisions from 40 (2017) to 200
- CPU time of current software quadratic/ exponential extrapolation (difficult to quote any number)
- (current software give sufficiently good results in terms of accuracy, but x10 too slow)
- Distant future FCC-hh would reach 1000



David Rousseau, IN2F

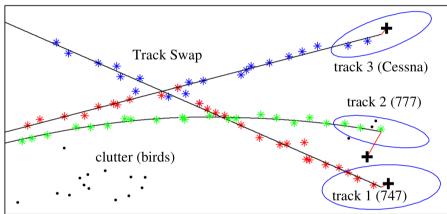
Pile-up

Motivation


- □ LHC experiments future computing budget flat (at best) (LHC experiments use 300.000 CPU cores on the LHC world wide computing grid)
- Installed CPU power per \$==€==CHF expected increase factor <10 in 2025</p>
- \square Experiments plan on increase of amount of data recorded (by a factor ~ 10)
- → HighLumi reconstruction to be as fast as current reconstruction despite factor 10 in complexity
- → requires very significant software CPU improvement, factor ~10.
- Large effort to optimise current software and tackle micro and macro parallelism
 - Also development of dedicated hardware for fast tracking
- >20 years of LHC tracking development. Everything has been tried!
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed?
 - Maybe no, brand new ideas from ML
- Need to engage a wide community to tackle this problem

Particle Tracking algorithms

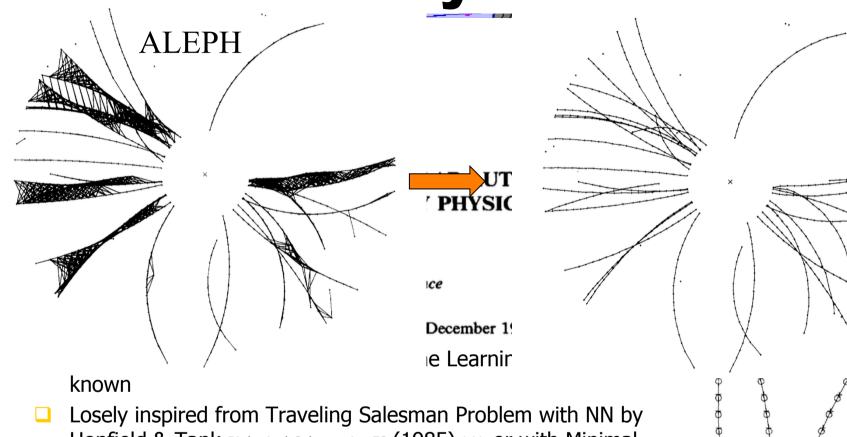
Current Algorithms


- Pattern : connect 3D points into tracks
- Essentially combinatorial approach
- Tracks are (not perfect) helices pointing (approximately) to the origin
- Challenge : explore completely new approaches
- (not part of the challenge : given the points, estimate the track parameters)

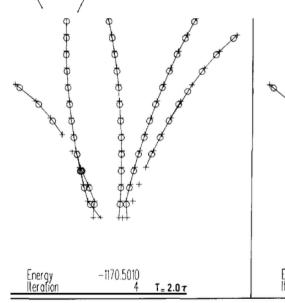
Pattern recognition in ML

Pattern recognition, tracking, is a very

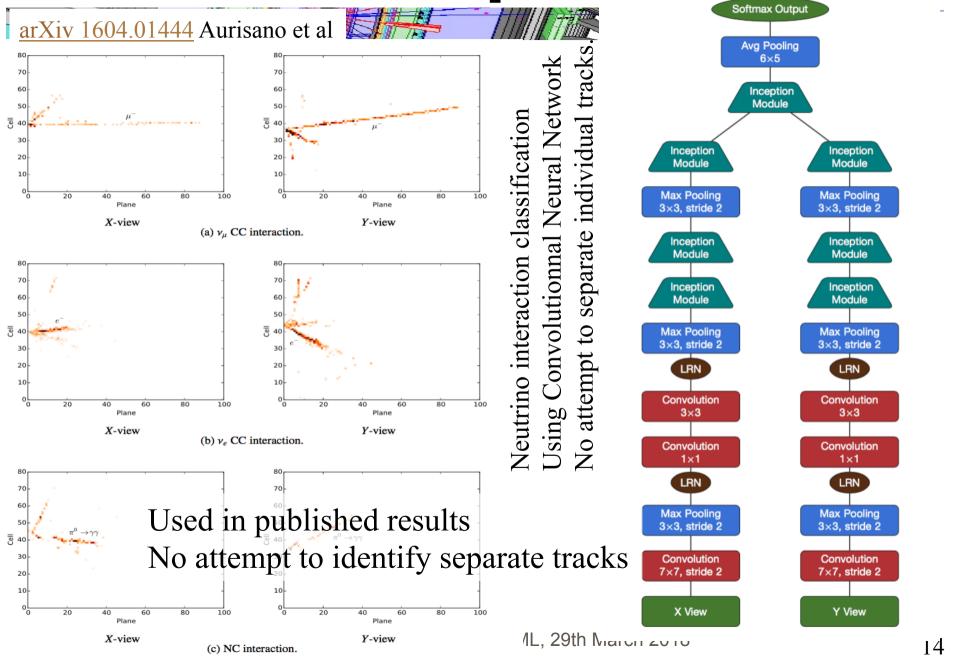
Intelligence : examples→

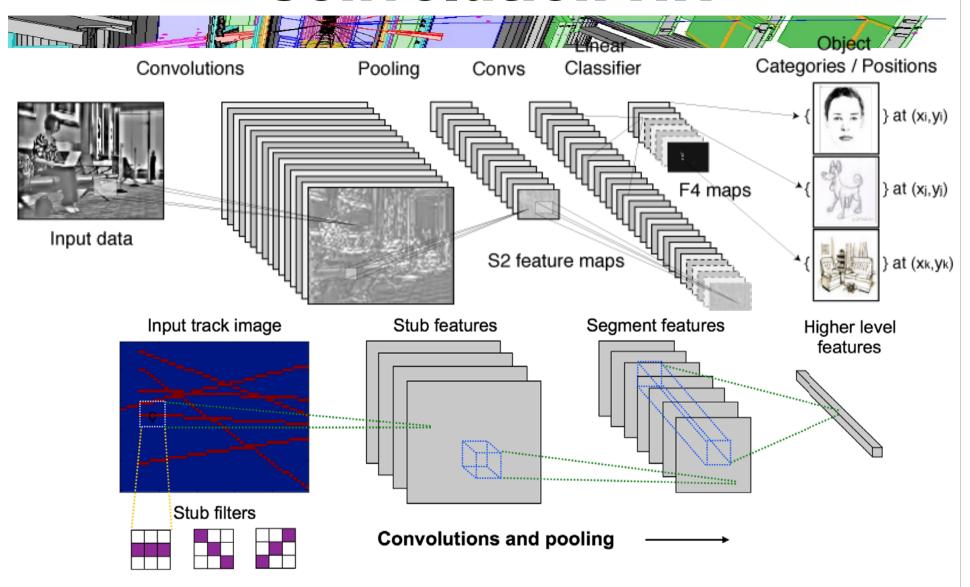


http://papers.nips.cc/paper/5572-a-complete-variational-tracker.pdf


- Note that these are real-time applications, with CPU constraints
- □ Worry about efficiency, "track swap",...
- But no on-the-shelf algorithm will solve our problem
- (in fact a few lines calling DBScan in sklearn does find some tracks)

David Rousseau. IN2F


An early attempt


- Losely inspired from Traveling Salesman Problem with NN by Hopfield & Tank Biological Cybernetics 52 (1985) 141. or with Minimal Tree Span Cassel & Kowalski Nucl Inst; and Meth 185 (1981) 235
- (large litterature since, e.g. Neural Combinatorial Optimization with reinforcement learning, Bello et al Google Brain 1611.0994)
- □ Full implementation in ALEPH Stimpfl & Garrido (1990) Computer Physics Comm. 64 (1991) 46.
- However never deployed

A recent attempt: NOVA

Convolution NN

See:

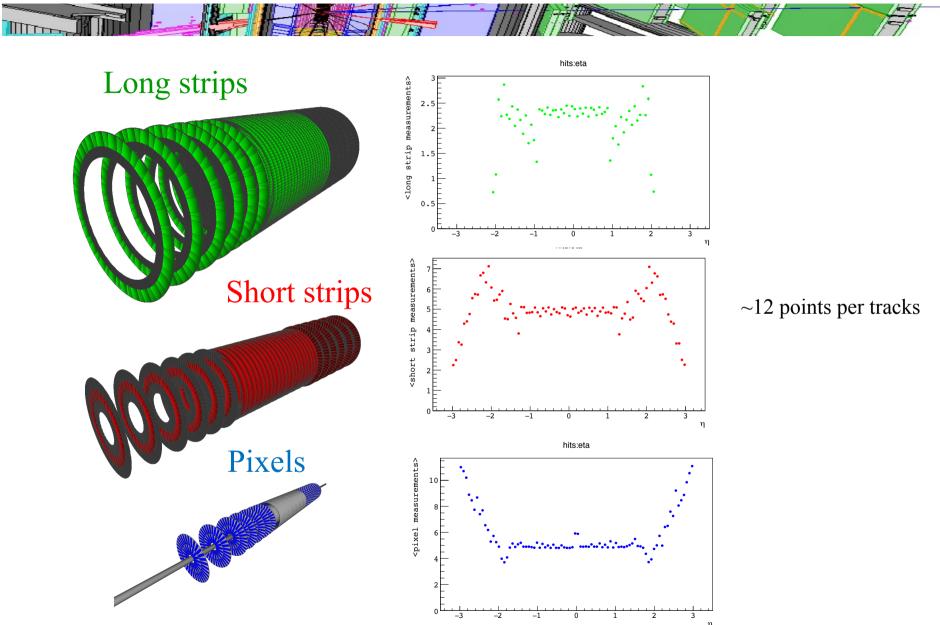
Farrel S. et al, The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking FPLWeb of USSeau, IN2P3 ML, 29th March 2018 Conferences 150, 00003 (2017)

RNN Long Short Term Memory (LSTM)

See:

Farrel S. et al, The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking FPLWeb of UN2P3 ML, 29th March 2018 Conferences 150, 00003 (2017)

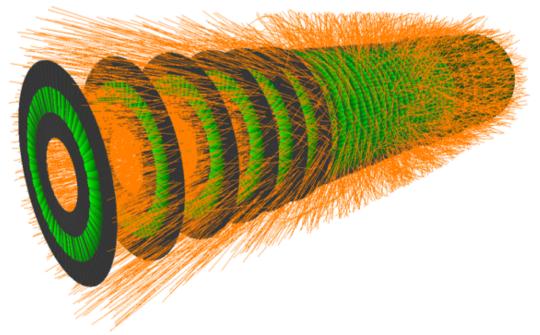
The tracking challenge

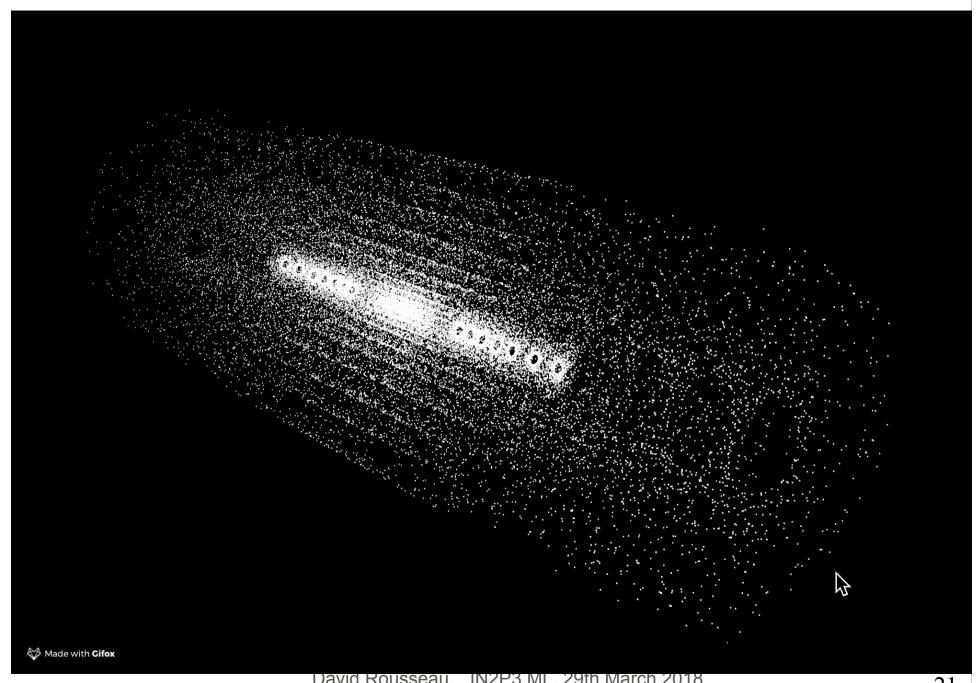


In a nutshell

- Accurate simulation engine (ACTS https://gitlab.cern.ch/acts/actscore) to produce realistic events
 - One file with list of 3D points
 - o Ground truth: one file with point to particle association
 - Ground truth auxiliary: true particle parameter (origin, direction, curvature)
 - Typical events with ~200 parasitic collisions (~10.000 tracks/event)
- ☐ Large training sample 100k events, 10 billion tracks ~100GByte
- Participants are given the test sample (with usual split for public and private leaderboard) and run the evaluation to find the tracks
- They should upload the tracks they have found
 - A track is a list of 3D points
 - (do not consider estimation of particle parameter)
 - Score : fraction of points correctly grouped together
 - Evaluation on test sample with per-mille precision on 100 event

Detector: layout




David Rousseau, IN2P3 ML, 29th March 2018

Event simulation

- Typical LHC event simulated
 - o Pythia tt-bar event
 - o Overlaid with Poisson(200) Pythia minimum bias
 - ∼10′000 tracks
- Most tracks are coming from a central region: gaussian σ_z =5.5 cm, transverse σ =15μm, some from a larger cylinder
- 15% of random hits
- Trajectories are deterministic, except for Multiple Scattering, Energy Loss and hadronic interaction

Datasets

Hit file

(measured position mm)

(pixel location and charge)

	hit_id	volume_id	layer_id	module_id	x	У	Z	ncells	pixels
0	1	7	2	1	-63.9659	-3.70513	-1502.5	1	[[141, 605, 0.297491]]
1	2	7	2	1	-40.2738	2.82386	-1502.5	1	[[48, 176, 0.291861]]
2	3	7	2	1	-88.1049	-11.72380	-1502.5	1	[[263, 1044, 0.327308]]
3	4	7	2	1	-39.7041	-8.71702	-1502.5	1	[[279, 182, 0.327097]]
4	5	7	2	1	-30.4918	-8.19262	-1502.5	1	[[283, 18, 0.258165]]

	_		11.		• 1 -
		rı	ITY) t	ile
		IL	I UI		

(true position mm

particle momentum GeV)

	hit_id	particle_id	tx		tz	tpx	tpy	tpz	weight
0	1	58562600635465728	-63.972698	-3.72889	-1502.5	-0.342366	-0.001899	-7.83544	0.018565
1	2	103582997587951616	-40.287201	2.84328	-1502.5	-0.366049	0.013878	-13.55470	0.035088
2	3	108088040324333568	-88.089600	-11.72360	-1502.5	-0.550128	-0.041929	-9.22279	0.018542
3	4	108090926542356480	-39.712601	-8.71581	-1502.5	-0.363936	-0.094646	-14.01150	0.035088
4	5	108103502206599168	-30.470400	-8.18647	-1502.5	-0.413489	-0.123403	-20.65790	0.000000

Datasets

								7/		
	Particle file	origin ve	ertex (mm)		charge					
particle_id		vx	vy	VZ	рх	ру	pz	q		
0	4503805785800704	-0.021389	-0.012618	-0.624757	38.907001	-16.146099	-84.311096	-1		
1	4504011944230912	-0.021389	-0.012618	-0.624757	-0.661993	0.118267	249.181000	1		
2	4504080663707648	-0.021389	-0.012618	-0.624757	0.821614	0.954217	0.948994	-1		
3	4504149383184384	-0.021389	-0.012618	-0.624757	0.300791	0.080450	2.656530	1		
4	4504218102661120	-0.021389	-0.012618	-0.624757	-0.552250	-0.481988	-0.888733	1		
•	(note: we do not ask participant to reconstruct these track parameters but these could be useful latent variables)									

☐ (static)Detector file center position (mm) 3x3 rotation matrix

	volume_id	layer_id	module_id	сх	су	CZ	rot_xu	rot_xv	rot_xw	ro
(6	2	1	-65.7965	-5.17830	-1502.5	0.078459	-0.996917	0.0	-0.99
-	6	2	2	-139.8510	-6.46568	-1502.0	0.046183	-0.998933	0.0	-0.99
2	2 6	2	3	-138.6570	-19.34190	-1498.0	0.138156	-0.990410	0.0	-0.99
3	6	2	4	-64.1764	-15.40740	-1498.0	0.233445	-0.972370	0.0	-0.97

Score

2017 CMS tracker Technical Design Report: Chapter 6 expected performance 31 pages 58 figures

ATLAS Si strip Technical Design Report Chapter 4 ITk Performance

and Physics Benchmark Studies 54 pages CMS Phase-2 Simulation CL upper limit

cap. 1 a uncertainty

Exp. 2 a uncertainty

Laptophobic 2 was belon

Vis = 14 Try Three Tr Tracking efficiency 0.9 0.8 → tt̄) [pb]) 10⁻¹ H 10⁻² Normalized # of E × p 10⁻³ 10^{-4} ATLAS Simulation 0 5.2 5.4 5.6 5.8 m_z, [TeV] _{lusseau}, IN2P3 ML, M_{bb} (GeV)

Track evaluation

many compatible

short tracks

hits

completeness

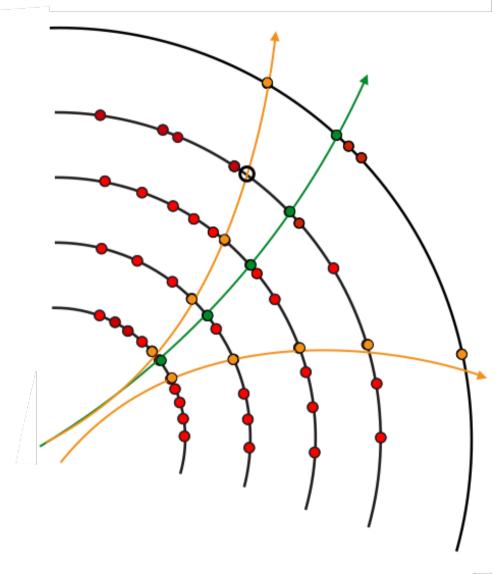
holes

uniqueness

shared hits

low χ^2 /ndf

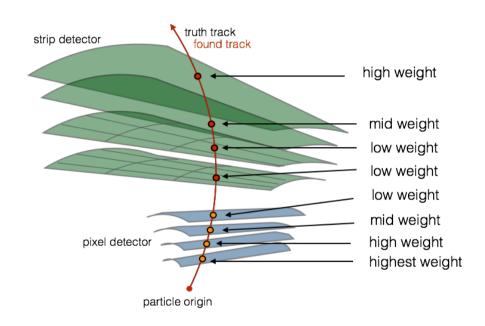
bad fit quality,

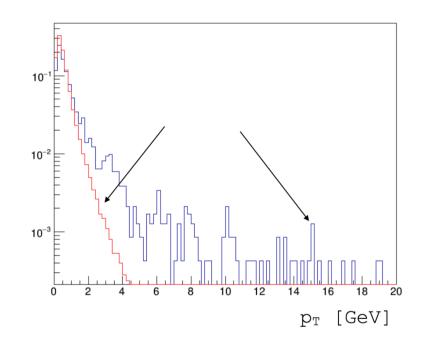

outliers

small impact

parameter

(for primaries)

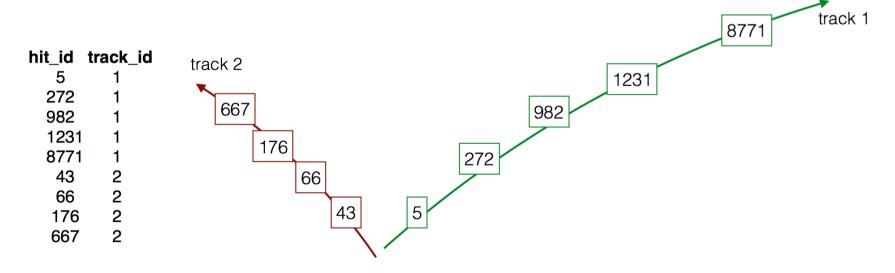

clusters are compatible

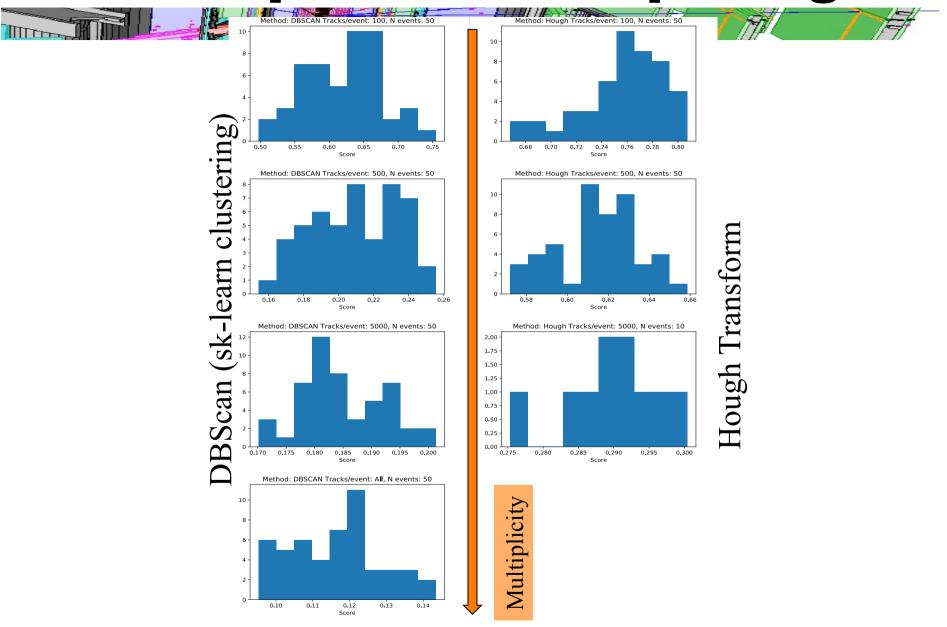


Hit weighting

Define : weight=weight_{order} x weight_{pt}

Weighted track score




- 93
- Weight_{order}: more emphasis on first and last hits
- Weight_{pt}: more emphasis on high pT tracks
- Weight=0 for noise hits or hits from particle with <=3 hits</p>

Track scoring

- Overall scoring defined at hit level
- Loop on reco tracks
 - Require >50% of hits from same true particle
 - o Require >50% of hits from this true particle in this reco track
 - At this point 1⇔1 relationship between true and reco tracks
 - Sum the weights of the intersection (hits belonging both to true and reco track)
- Event score normalised to the sum of weights of all the hits
 - → ideal algorithm has score==1.
- □ Final score averaged of 100 events → statistical precision ~0.1%

Attempt with 2 simple algs

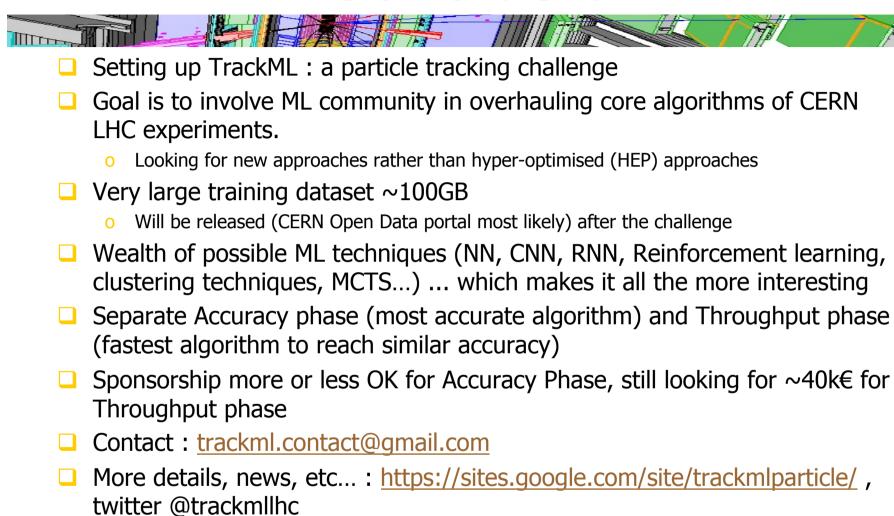
David Rousseau, IN2P3 ML, 29th March 2018

Real life vs challenge

- 1. Wide type of physics events
- 2. Full detailed Geant 4 / data
- 3. Detailed dead matter description
- Complex geometry (tilted modules, double layers, misalignments...)
- 5. Hit merging
- 6. Allow shared hits
- 7. Output is hit clustering, track parameter and covariance matrix
- 8. Multiple metrics (see TDR's)

- 1. One event type (ttbar)
- 2. ACTS (MS, energy loss, hadronic interaction, solenoidal magnetic field, inefficiency)
- 3. Cylinders and slabs
- 4. Simple, ideal, geometry (cylinders and disks)
- 5. No hit merging
- Disallow shared hits
- Output is hit clustering
- 8. Single number metrics

Simpler, but not too simple!


Challenge phases

- We will run in two phases
 - Accuracy Phase : focus only on accuracy, no CPU incentive
 - Goal is to expose innovative algorithms
 - Training time unlimited
 - Evaluation time unlimited
 - To run April-June 2018 on Kaggle
 - Throughput Phase: focus on CPU, preserving accuracy
 - Goal is to expose the fastest algorithms
 - Training time (still) unlimited
 - Require the challenge platform to run the algorithm evaluation within fully reproducible controlled environment (VM with x86 processor with 2GB memory, but do not exclude a GPU track in addition)
 - To run in July-October 2018 (NOT on Kaggle)
 - Official NIPS 2018 competition

Prizes :

- From leaderboards of first phase: 8k\$ 5k\$ 2k\$ (from Kaggle)
- From jury examining the algorithms: what are the more likely to be beneficial to HEP?
 Invitation to NIPS workshop (if confirmed) and to CERN workshop
- (Looking for more sponsors, academic or private)

Conclusion

☐ We've beeing accepted as a NIPS 2018 competition (Throughput phase)