

Journée Advanced Virgo + du 31 mai

- Organisée avec le soutien du GdR Ondes Gravitationnelles.
 - http://gdrgw.in2p3.fr/
- Agenda: https://indico.in2p3.fr/event/17271/

La stratégie d'upgrade d'Advanced Virgo AdV+

B. Mours (LAPP-Annecy) May 31, 2018

GW science is driven by detector progress

Best BNS range for initial detectors

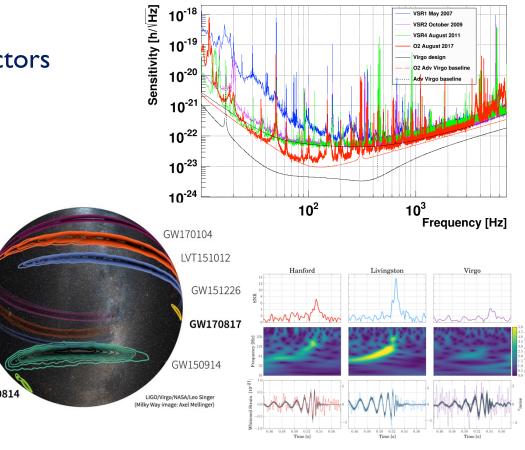
■ LIGO: ~ 20 Mpc

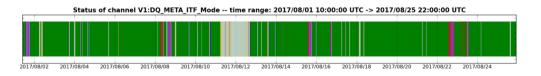
Virgo: ~ 12 Mpc

Advanced detectors

LIGO O1: ~ 60-80 Mpc

LIGO O2: ~ 70-105 Mpc


AdV O2: 25-28 Mpc


Sources

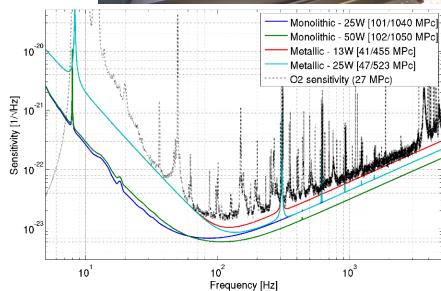
GWI50914: BBH @ 410 Mpc

• GW170814: BBH @ 540 Mpc

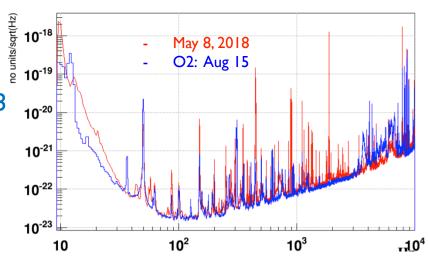
GW170817: BNS @ 40 Mpc GW170814

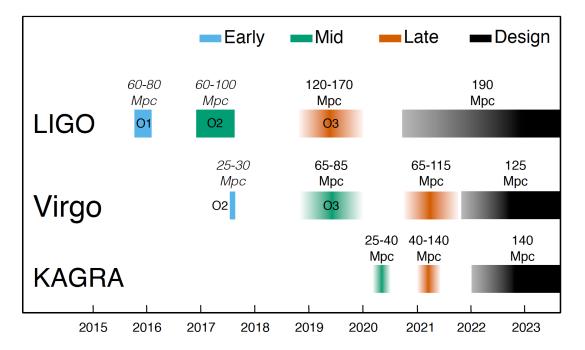
O2 Detector Summary

- ▶ 85 % duty cycle
 - Longest lock segment: 69 hours
- ▶ Mean BNS range: 25-28 Mpc
 - Limit was 45 Mpc
- Noise budget
 - Many bumps and lines and some extra broadband noise

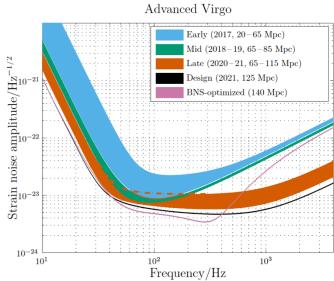


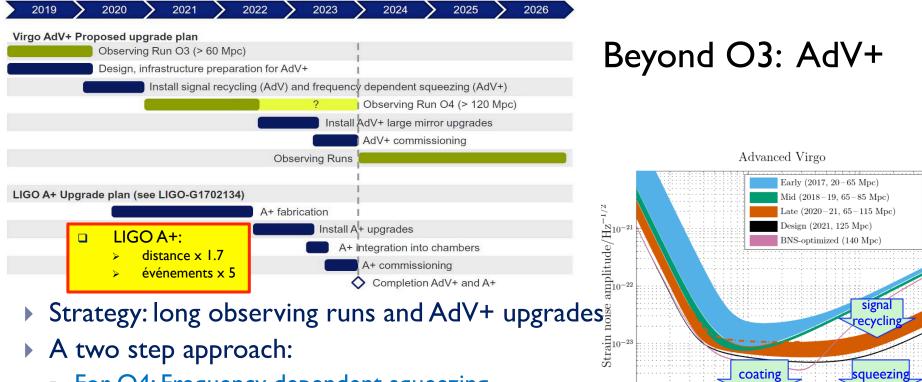
From O2 to O3


Main changes


- Monolithic suspensions
- Laser power: 70 W→100 W
- Frequency independent squeezer
- ▶ O3 Goal: 60 Mpc
- Installation completed on April 19
 - Back to commissioning

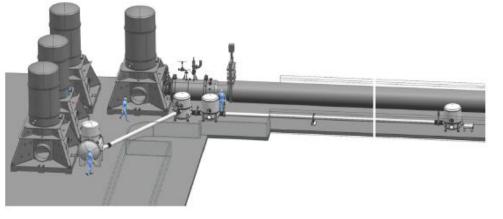
Toward O3: back to commissioning


- ▶ Back in "low noise 3" on May 2nd,
 - Reach up to 25 Mpc (BNS range)
- Long commissioning period
 - No major shutdown scheduled before O3
 - O3 start: Feb. 2019, aligned with LIGO
 - Commissioning activities
 - Usual noises/glitches reduction
 - Robustness
 - Commissioning of the squeezer
 - ▶ Power increase; max for O3: 50W
- Engineering Runs
 - Once per month over a weekend
 - Long engineering run prior to O3



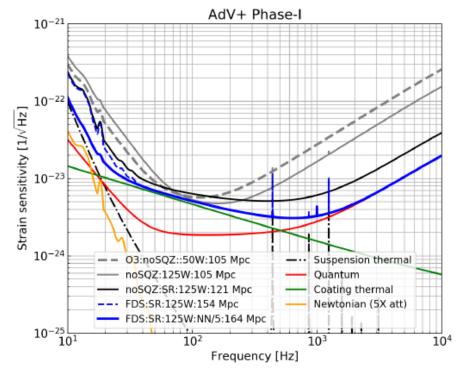
- AdV design range: I25 Mpc
- Could we do better than AdV?
- Could we stay competitive?
- ▶ Could we prepare the way to ET?

Beyond O3?



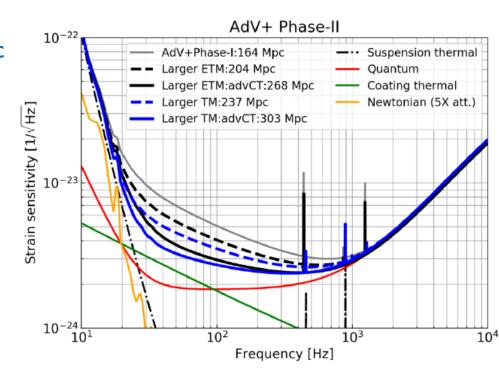
 10^{3}

Frequency/Hz


- For O4: Frequency dependent squeezing
 - + Complete AdV: signal recycling
- For O5: Reduce the coating thermal noise
 - Larger beam: Four test masses or just the end test masses?
 - Improved coating
- AdV+ proposed to the EGO Council last December

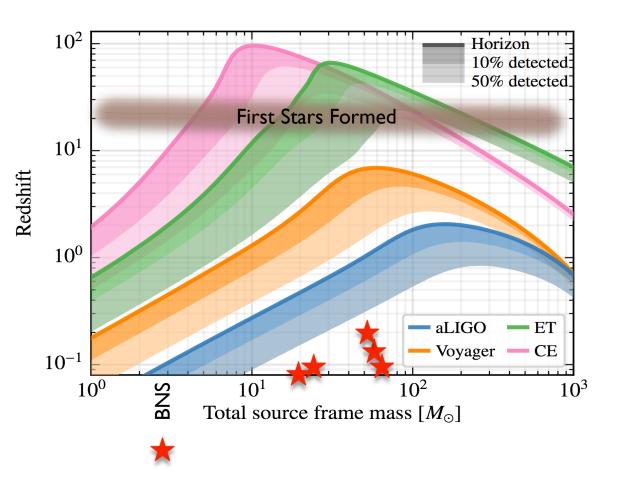
Complete the AdV program:

- 200 W laser; I25W at the ITF input
- Signal recycling → I20 Mpc
- Frequency dependent squeezing
 - New filtering cavity
 - →150 Mpc
- Newtonian noise cancellation
 - → 160 Mpc


AdV+ phase I

AdV+ Phase II

- Larger mirrors
 - Diameter: 550 mm, thickness: 200 mm, mass: 105 kg (?)
 - Scenario I: ETM-only → 200 Mpc
 - Scenario 2: full upgrade → 230 Mpc
- Coating improvements
 - If factor three reduction in CTN:
 - Scenario I: ETM-only → 260 Mpc
 - Scenario 2: full upgrade → 300 Mpc
- Many challenges and activities
 - Grand Coater upgrade
 - Vacuum, infrastructure
 - Payloads and superattenuators
 - Aberration control


Budget

	Phase	Item	Completed	BNS range	Cost
				[Mpc]	[M€]
	AdV-O3		2019	65 - 80	
	AdV design	Tuned signal recycling + 125 W	2021	120	
	Phase I	Frequency dependent squeezing (FDS)	2021	150	3.5
		Newtonian noise cancellation (NNC)	2021	160	1.0
	Phase II	Scenario 1: Large mirrors, ETM-only (LM1)			11.7
		Scenario 1 net cost: FDS + NNC + LM1			16.2
		Contingency (20%)			3.2
		Scenario 1 - ETM-only upgrade cost	2023	200 - 260	19.5
		Scenario 2: Large mirrors, full upgrade (LM2)			20.8
		Scenario 2 net cost: FDS + NNC + LM2			25.3
		Contingency (20%)			5.1
Not yet revie	l Wod	Scenario 2 - Full upgrade cost		230 - 300	30.4
	, reg	Risk reduction NDRC			8.5

▶ Hope to get (some) approval during the June EGO Council meeting...

AdV+: a step toward 3G

- ▶ 3G detectors
 - Could see
 some sources
 all over the
 Universe
- Detector and Data Analysis challenges

