

Physics at Belle II: a snapshot

From First collisions in SUperKEKB, 2018/05/05

Jérôme Baudot jerome.baudot@iphc.cnrs.fr

针对两个无穷的物理研究:硕士法国暑期学校 Physics for both infinities: L'École d'été France Excellence 2018

The Belle II team at IPHC

Jérôme Baudot Professor

Daniel Cuesta PhD student

Isabelle Ripp-Baudot

Sviatoslav Bilokin

Reem Rasheed PhD student

Luka Santelj

× Additional engineering team

→ PLUME Pixel detector for BEAST

× Legacy from B-factories & hot topics

Beyond SM effects at O(10) GeV

- × "big" questions & flavor physics
- × Whish list
- × BaBar, Belle, LHCb legacy
- × We have LHCb, why would we want another B-stuff?

- × Violations of known symmetry (ex: lepton flavour)
- × New particles (fermions, bosons)
- X New couplings (L-R symmetry, FCNC)
- Additional source of CP violation
- CKM matrix relation with mass

× Dark matter

Strong force in binding hadrons

Flavor physics

× Loops

in the flavor sector

- → Effective lagrangian
 - o Mass, coupling

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{g_{\text{NP}}}{\Lambda^2} O^{(6)} (\text{SM fields}) + \dots$$

× Interest of rare processes

- Large modification expected from Beyond SM (BSM) wrt Standard Model (SM)
- Not necessarily @ high energies

Simplistic scheme of discovery limit

→ LHCb, NA62, BES III, Belle II, ...

The two frontiers

x Energy frontier

→ LHC & future LC or CC

→ Direct creation of BSM

x Intensity frontier

→ SuperKEKB (also LHC & future LC or CC)

→ Indirect effect of BSM

Cross-interpretation since same physics

> How does BSM flavour coupling interfere with this naïve expectation?

Effective Field Theory

Wilson development

From J. MARTIN CAMALICH

$$G_F V_{cb} V_{cs}^* C_2 \bar{c}_L \gamma^{\mu} b_L \bar{s}_L \gamma_{\mu} c_L$$

FCNC:

$$\frac{e}{4\pi^2}$$
 G_F V_{tb} V_{ts}^* m_b C_7 $\bar{s}_L \sigma_{\mu\nu} b_R$ $F^{\mu\nu}$

$$G_F V_{tb} V_{ts}^* rac{lpha}{4\pi} rac{C_{9(10)}}{5} ar{s}_L \gamma^\mu b_L ar{\ell} \gamma_\mu (\gamma_5) \ell$$

- Wilson coefficients $C_k(\mu)$ calculated in P.T. at $\mu = m_W$ and rescaled to $\mu = m_D$ Complex!
- \rightarrow C_k are complex -> possible source of new CP-violated phase
- \rightarrow C_k (measured) = C_k (SM) + δC_k , with δC_k , standing for Physics Beyond SM

Effective Field Theory

x Wilson development

CC (Fermi theory):

From J. MARTIN CAMALICH

GF Vcb Vcs C2 CLY bL SLY CL

$$G_F V_{tb} V_{ts}^* rac{lpha}{4\pi} C_{9(10)} \, ar{s}_L \gamma^\mu b_L \, ar{\ell} \gamma_\mu (\gamma_5) \ell$$

- Wilson coefficients $C_k(\mu)$ calculated in P.T. at $\mu=m_W$ and rescaled to $\mu=m_b$ Complex!

A wealth of processes of interest

- CP asymmetries (also in charm)
- Electroweak penguin
- Rare B, K decays
- Lepton flavor violation

- And others
 - Tauonic B decay
 - Dark sector

			P. Harten		FIRE CORP.	1 1 1 1 1 1	\$ C 10 00
	\mathbf{AC}	RVV2	AKM	$\delta { m LL}$	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\mathrm{CP}}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B o K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L o \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$ au o \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models ★★★ signals large effects, ★★ visible but small effects and ★ implies that the given model does not predict sizable effects in that observable.

=> Identification of BSM model requires many measurements

B-factories legacy

× Data accumulated: ~1 ab⁻¹ per factory

- → PEP-II BaBar, 1999-2008
- → KEKB Belle, 1999-2010

× CP violation measurements

- \rightarrow First at tree level b->ccbar transitions (J/ Ψ K_{s.} 4%)
- Then also at loop level b->s transitions (ΦK_s , $\eta' K_s$)

× Tensions

- → B->Dτν & B->D*τν
- → Also LHCb

$$R = \frac{\mathcal{B}(b \to q \tau \bar{\nu}_{\tau})}{\mathcal{B}(b \to q \ell \bar{\nu}_{\ell})}$$
$$\ell = e, \mu$$

Data accumulated

- \rightarrow Run 1: 3 fb⁻¹ + Run 2: 6 fb⁻¹ (expected end of 2018)
- Resume in 2021 with Run 3 for +15 fb-1 by 2024

× Tensions in b->s transitions

- \rightarrow R(K*) = P(B->K*ee) / P(B->K*uu)
- → Angular distribution of B->K*μμ

$$R = \frac{\mathcal{B}(b \to s \,\mu \,\mu)}{\mathcal{B}(b \to s \,e \,e)}$$

× Tensions in leptonic transitions

 \rightarrow B-> $\tau\mu$ (difference in estimatin from |Vub| wrt other channels) for tree level b->u / BaBar & Belle

Belle II - LHCb complementarity

LHCb

Initial states

Belle II

Extremely large Xsections for B_d , B_u , B_s , and Λ_h

- \rightarrow Mostly restricted to B_u, B_d
- \rightarrow B_s if gearing up to Y(5S)
- → Initial energy known:
 - Missing mass, recoil techniques

Final states

- → Crowdy events
- → Large boost: easy vertexing
- → Only self flavour tagging

- $\rightarrow \pi^0$, η , η' , ρ , ν
- → Isolated photons
- → Low multiplicity (~1)
- → Flavor tagging with other B
- → Full event reconstruction
- → Absolute Branching fraction (luminosity w Bhabha)

SuperKEKB collider & background

- x Luminosity
- Asymmetric collisions
- Beam induced background

KEK @ Tsukuba, Japan

About luminosity

Target instantaneous luminosity: $L = 8 \times 10^{35} \text{ cm}^{-2} \cdot \text{s}^{-1}$ X

$$L \propto I^2 / (\sigma_x \times \sigma_y)$$

KEKB → SuperKEKB

- → Currents I x2
 - \circ I_{e+}=3.6A, I_{e-}=2.6 A
- → Beams size $\sigma_{y}/20$
 - \circ $\sigma_x \times \sigma_y \sim 10 \mu m \times 60 nm$
- → Crossing angle ×4
 - $\circ \phi = 83 \text{ mrad}$
- → lumi x 80

First beams in 2016 = Phase 1

J.Baudot

× What is the energy asymmetry for ?

→ Boost the B-Bbar syste and allows for Time Dependent Asymmetry measurements

x Why center-of-mass energy exactly Y(45) mass

- → Intricate the two B mesons
- → Avoid fragmentation regime for qq pairs

Beam induced background

- x Luminosity increase has a cost
 - → Parasitic particles from beam x10 to x20

Detector upgrades required

- Faster
- Tougher
- Higher precision

Belle

Belle II

⇒ Similar effects for all e++e- machines: ILC, CLIC, CEPC, FCC-ee but "details" are different (energy, colliding scheme)

The physics of beam background

× Single beam effects

- → Touschek: intra-beam scattering
 - ∘ Prob \propto I²_{bunch} \times N_{bunch} / ($\sigma_x \times \sigma_y$) / E³_{beam}

- → Beam gas (vacuum residue)
 - o Prob ∝ I² x pressure
- → Synchrotron radiation
 - o Power ∝ E4_{beam} / curvature

× Beam-beam effects (QED)

- → Radiative Bhabha scattering
 - \circ σ ~ 50 nb

Both Prob ∝ Lumi

- Pair creation by two photons interactions \circ σ ~ 10^7 nb

Control of the beam background

Phase 2 goals (2018 run)

- → Validate background understanding @ 1/100 to 1/20 of max luminosity
- → Comparison measurement simulation
- → Green light for final silicon det. installation

× Dedicated detectors = BEAST

- → 1 sector equipped with final Si sensors
 - o Double sided strips + DEPFET pixels
- → Dose monitoring
 - PIN-diodes
 - o Diamond sensors
- Charged particle & Synchrotron
 - ATLAS-pixel
 - o ILC-pixel PLUME
- Neutron rate
 - Micro-TPC
 - o He3-volume
- → Time structure
 - Fast scintillator + SiPM (ILC-calorimetry)

replaced by

Note: the rest of BELLE II is there!

SuperKEKB runs since March 16th

× Already various beam-background studies

× FIRST COLLISIONS recorded May 6th

- → Peak luminosity reach during PHASE-2 \$10³³ cm⁻²/s range
- Integrated luminosity close to 1 fb⁻¹ (run ended on July 17th)

Belle II detector

x Extremely brief overview

Le détecteur Belle-II

 $7.4 \text{ m} \times 7.1 \text{ m}$

Calorimètre EM

barrel : Csl(Tl)

end-caps : pur Csl

Particle-Id

barrel: Time-of-Propagation

forward: focusing Aerogel RICH

 $E(e^-) = 7 GeV$

Central Drift Chamber He(50 %):C₂H₆(50 %)

K_L and µ detector outer barrel: RPC

end-caps + inner barrel : scintillateur + Si-PM

Beam pipe @IR

Beryllium, rayon = 1 cm

Vertex detector

PXD: 2 couches pixels DEPFET

SVD: 4 couches strips double-faces

How it looks during assembly

J.Baudot

Some simulated performances

J.Baudot

Statistics for physics

X B factories at O(10) GeV $e^+ + e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

$$|e^+ + e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}|$$

- → per 1 ab⁻¹ of integrated luminosity:
 - 1.1 x10⁹ bb
 - \circ 1.3 x10⁹ cc
 - \circ 0.9 x10⁹ $\tau + \tau$ -

x From the 2000s

- → BaBar (SLAC)
 - o 454 fb⁻¹
- → Belle (KEK)
 - o 711 fb⁻¹

× Expected in the 2020s...

- → Belle II SuperKEKB
- → 3.6% of luminosity for Y(nS), n≠4

Known particles have been seen with real data!

FIG. 20: ΔM (left) and M_D (right) signal-enhanced projections in 250 pb⁻¹ prod4 data sample for $D \to K\pi$ final state.

Detailed focus

x Test of V+A coupling in radiative penguins B decays

31

Photon polarisation to sign BSM

× Radiative penguin diagram

- → Penguin diagram ⇔ loop
 - Sensitivity to new particle / coupling
- → Radiative decay ⇔ photon polarisation
 - Sensitivity to V-A structure

× The photon polarisation is constrained in SM: why?

- → 2 basic ingredients
 - o Only left-handed fermions are coupled to W
 - o spin S and its projection Sz are both conserved
- → 2 "tricks"
 - Helicity = chirality

$$\frac{P(b_L \to s_R + \gamma_R)}{P(b_R \to s_L + \gamma_L)} \approx \frac{m_s}{m_b} \sim 0$$

$$B^{0}(\overline{b}d) \rightarrow \text{Right-handed } \gamma$$

 $\overline{B}^{0}(\overline{b}d) \rightarrow \text{Left-handed } \gamma$

Expectation on photon polarisation

X New physics with Left-Right symmetry

$$\rightarrow$$
 Helicity flip on top quark line! $P(t_L \rightarrow t_R) \propto m_t >> m_s$

 \rightarrow Non-zero probability for right-handed γ in anti-B decay

- How can we access the photon polarisation?
- Direct measurement with 3 body decays
 - \rightarrow B+->K+ π - π + γ
 - \rightarrow Requires a lot of data & Dalitz analysis of $K\pi\pi$ resonnances

Indirect measurement in time dependent CP violation

- → Indirect CP violation requires interference in final states of f_B and f_{Bbar}
- In SM are different since not the same photon polarisation => NO Cpviolation
- → New physics might change the result within \$ 10%

The B meson have small boost: lab frame \sim B rest frame \Rightarrow s and γ back-to-back

Helicity flip on b quark

Helicity flip $P(b_L \rightarrow b_R) \propto m_b$

The B meson have small boost: lab frame \sim B rest frame \Rightarrow s and γ back-to-back

Helicity flip on s quark

Helicity flip $P(s_L \rightarrow s_R) \propto m_s$

The B meson have small boost: lab frame \sim B rest frame \Rightarrow s and γ back-to-back

Conclusion on photon polarisation

In the standard model:

$$\frac{P(b_L \to s_R + \gamma_R)}{P(b_R \to s_L + \gamma_L)} \approx \frac{m_s}{m_b} \sim 0$$

- In anti-B meson, both b_1 and b_2 are present, but $b_2 \rightarrow \gamma_1$ will dominate
 - o Opposite helicities dominate in B meson with anti-b quark
- → Final SM expectation

$$B^{0}(\overline{b}d) \rightarrow \text{Right-handed } \gamma$$

 $\overline{B}^{0}(\overline{b}\overline{d}) \rightarrow \text{Left-handed } \gamma$

Time dependent asymmetries

CP violation in decays to CP eigenstate

→ Direct violation
$$\Gamma(B \rightarrow X) \neq \Gamma(\overline{B} \rightarrow \overline{X})$$

Indirect (interference with mixing)

$$\begin{array}{c} \Gamma(\mathbf{B} \rightarrow f_{\mathit{CP}}) + \Gamma(\mathbf{B} \rightarrow \overline{\mathbf{B}} \rightarrow f_{\mathit{CP}}) \\ \neq \\ \Gamma(\overline{\mathbf{B}} \rightarrow \overline{f_{\mathit{CP}}}) + \Gamma(\overline{\mathbf{B}} \rightarrow \mathbf{B} \rightarrow \overline{f_{\mathit{CP}}}) \end{array}$$

The formulas $\eta_{CP}(B)=+1$, $\eta_{CP}(anti-B)=-1$

$$\Gamma(B^0(t) \to f) = g_{\eta_{CP}} = Ne^{-\Gamma_{B^0}|\Delta t|} [1 + \eta_{CP}(C_f \cos(\Delta M \Delta t) + S_f \sin(\Delta M \Delta t))]$$

$$\Gamma(\bar{B}^0(t) \to f) = g_{\eta_{CP}} = Ne^{-\Gamma_{B^0}|\Delta t|} [1 + \eta_{CP}(C_f \cos(\Delta M \Delta t) + S_f \sin(\Delta M \Delta t))]$$

The measurement = asymmetry

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\bar{B}^0(t) \to f) + \Gamma(B^0(t) \to f)}$$

→ Time is needed, otherwise effect vanishes!

Time dependent asymmetries

x From detector

- → Identify final state on signal side (B1)
- Measure Δ t from Δ z and B-momentum excellent vertex detector
- → Tag B₂ to get B₁ flavor

complex algorithm (machine learning)

REQUIRED

Example of Belle analysis

PRL101 (2008)

$$B^0 \to K_1(1270) + \gamma \to K_S^0 + \pi^+ + \pi^- + \gamma$$

$$K_1(1270) \rightarrow \pi^+ + \pi^-$$

J.Baudot

Time dependent asymmetries

Golden channel B^0 -> $K_s\pi^0\gamma$

- LHCb cannot compete (π^0)
- Uncertainty: statistical ~ systematics already around 10 ab⁻¹
- Difficult part, vertex resolution with only $K_s = \infty$ exploit known boost direction
- Relative uncertainty expectation @ 50 ab⁻¹: 3%

Also possible with B^0 -> $K_s\pi^+\pi^-\gamma$

- → Easier vertex resolution with
- → Statistics lower
- Might be difficult to interpret
 - Need connection with $B^+ - > K^+ \pi^- \pi^+ \gamma$

Short focus

- x Tau anomaly
- × Lepton flavour violation

Anomaly in tau?

Belle II can

- \rightarrow Measure R(D*), R(D) and τ polarisation simultaneously
- \rightarrow With 50 ab⁻¹, SM could be ruled out by 9 σ

$$R = \frac{\mathcal{B}(b \to q \tau \bar{\nu}_{\tau})}{\mathcal{B}(b \to q \ell \bar{\nu}_{\ell})}$$
$$\ell = e, \mu$$

Full event interpretation

From Thomas KECK, 2017

Lepton flavour violation

x Reconstruct as many tau decays as possible

- $\rightarrow \tau$ -> hadrons doable
- → Some very clean: τ -> μμμ background free

SM: suppressed by a factor

$$\frac{\Delta m_{\nu}^4}{\Delta M_W^4} \approx 10^{-45}$$

CLEO BaBar Belle LHCb Belle II

In the early program...

...but of course not only

- × Year 0 (2018), 20 fb-1 expected
- x Dark sector
- x Bottomium

Reminder on Phase 2 (2018)

No vertex det. \Rightarrow no Δt measurement

Still: γ , leptons, K^0 , π^0 , D, B

Dark photon search

From Thorsten FERBER, Feb'2018

Dark photon decaying into light Dark Matter

- In the so called Vector Portal, a (massive) Dark Photon A can mix with the SM photon with strength ε.
- If there is a sufficiently light Dark Matter (DM) particle, the A will dominantly decay into DM: Invisible final state.
- Search for e+e-→Aγ by searching for a single, high energetic photon: Bump-hunt in recoil mass energy (or photon energy).

Many other searches

× Axion-like particles

→ 3 g event

× Invisible Z' decay

- $\rightarrow \mu$ or τ but no e
- Recoil technique

J.Baudot

Bottomium states

From Umberto TAMPONI, Feb'2018

Belle II phase II prospects:

- \rightarrow Hints of a resonance around 10.750 GeV?
- → Run in Phase II at 10.750 GeV and/or at 10.800 GeV
- → Combine Belle and Belle II data

Expected local significance of an extra resonance ($> 3\sigma$ only)

10 fb⁻¹ at 10.750 GeV + 10 fb⁻¹ at 10.800 GeV

Note: Belle II is the last chance to investigate the Y family

If you don't come to Belle 11...

... Belle 11 will come to you!

in a friendly way of course.

J.Baudot

- X Belle II status and potential, by P.Krizam @ Alps2018 https://indico.cern.ch/event/645588
- X Belle II TheoryInterfacePlatform (B2TiP), to be published in PTEP https://confluence.desy.de/display/BI/B2TIP+WebHome
- × Physics at B Factories, Eur. Phys. J. C74 (2014) 3026
- × Physics at Super B Factory, arXiv:1002.5012 (Belle II)
- × SuperB Progress Reports: Physics, arXiv:1008.1541 (SuperB)

BACKUPs

53

Using "current" central values, and extrapolated stat+syst errors

Effective theory in b->sy transitions

From David STRAUB, Oct'2017

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(-\frac{V_{ub}V_{us}^*}{V_{tb}V_{ts}^*} \sum_{i=1}^2 C_i Q_i^u + \sum_{i=1}^2 C_i Q_i^c \right. \qquad \text{current-current (tree!)}$$

$$+ \sum_{i=3}^6 C_i Q_i + C_{iQ} Q_{iQ} \qquad \qquad \text{QCD \& EW penguin}$$

$$+ \sum_{i=7}^8 C_i Q_i + C_i' Q_i' + \text{h.c.} \right) \qquad \text{dipole}$$

$$Q_1^p = (\bar{s}_L \gamma_\mu T^a p_L)(\bar{p}_L \gamma^\mu T^a b_L) \qquad \qquad Q_2^p = (\bar{c}_L \gamma_\mu p_L)(\bar{p}_L \gamma^\mu b_L)$$

$$Q_7^{(\prime)} = \frac{e}{16\pi^2} m_b(\bar{s}_{L(R)} \sigma_{\mu\nu} b_{R(L)}) F^{\mu\nu} \quad Q_8^{(\prime)} = \frac{g_s}{16\pi^2} m_b(\bar{s}_{L(R)} \sigma_{\mu\nu} T^a b_{R(L)}) G^{a\mu\nu}$$

$$C_7^{\text{eff, SM}}(\mu = m_b) = -0.2915$$
 $C_7^{\prime \, \text{SM}} = \frac{m_s}{m_b} C_7^{\text{SM}}$

- x (semi-) leptonic B decays
- × CKM matrix elements: |Vub|, |V_{cb}|
- x Radiative and electroweak penguins B decays
- \times CKM matrix/triangle angles with TD-CPV, α , β , γ
- x Charmless hadronic B decays and direct CPV
- × Charm physics: CPV, ?
- × Quarkonium physics
- × Tau physics, lepton flavor violation
- × Dark sector, light Higgs