Axion-like Particle Dark Matter & Small-scale Structure

David J. E. Marsh

GEORG-AUGUST-UNIVERSITÄT Göttingen Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Two models of CDM

WIMPs Predicted ~1970's Naturally come from SUSY. Heavy, nucleon mass. Thermal. ''Traditional'' search strategies.

Cold due to small thermal velocities Collisions necessary for production

Axions

Predicted ~1970's Come from strong-CP. v. light, sub-neutrino mass. Non-thermal. ''Non-traditional'' search strategies.

> "Cold" due to coherence and small wavelength Interactions via wave equations

Axions are just a type of CDM, with different extreme limits than thermal DM

On Axions and WIMPs

On Axions and WIMPs

Predicted interaction strength for WIMPs has already been excluded. Soon experiments will hit the ''neutrino floor''.

On Axions and WIMPs

 $\phi \epsilon_{\mu\nu\alpha\beta} F^{\mu\nu} F^{\alpha\beta}$

On Axions and WIMPs

The QCD axion is essentially a one-parameter model. Only one experiment has got into the range to probe DM.

What makes an ALP?

An ALP is a non-thermally produced classical scalar field. ALPs differ from CDM in initial conditions & dynamics.

Symmetry breaking leading to axion relic density

- \rightarrow Dense DM relics
- → ''Miniclusters''
- → Microlensing constraints a la PBHs
- → Important for the standard QCD axion
- \rightarrow Smallest DM structures

Uncertainty principle

- → Small-scale coherence and dynamic halos
- \rightarrow Suppression of structure
- \rightarrow Formation of solitonic

"axion stars"

- → Pronounced for ultralight "Fuzzy DM", m~10⁻²² eV
- → Lightest DM particle

"Miniclusters": dense clumps from initial conditions (c.f. MACHOs). Sub-lunar mass. Classic QCD axion window.

"Fuzzy DM": diffuse due to macroscopic wavelength (c.f. warm DM). Dwarf galaxy scales. String theory axions?

The Life of Axions

Spontaneous Symmetry Breaking \rightarrow (p)NGB

The "decay constant" determines temperature of phase transition:

$$\begin{split} \delta \varphi &\sim T \sim \frac{H_I}{2\pi} \\ T \gg f_a \\ \langle \varphi \rangle &= 0 \end{split}$$

Spontaneous Symmetry Breaking \rightarrow (p)NGB

The "decay constant" determines temperature of phase transition:

$$\delta \varphi \sim T \sim \frac{H_I}{2\pi}$$
$$T \ll f_a$$

$$\langle \varphi \rangle = f_a / \sqrt{2}$$

The axion is born: $heta=\phi/f_a$

Symmetry breaking \rightarrow relics

 $\theta \in \mathcal{U}[-\pi,\pi]$

Vacuum Realignment

Axion acquires mass, evolves according to Klein-Gordon:

$$\ddot{\phi} + 3H\dot{\phi} + m_a^2\phi = 0$$

Axion is ''frozen'' by Hubble friction term.

$$\Rightarrow \rho_a \approx \text{const.}$$
$$\Rightarrow w_a \approx -1$$

Vacuum Realignment

Axion acquires mass*, evolves according to Klein-Gordon:

$$\ddot{\phi} + 3H\dot{\phi} + m_a^2\phi = 0$$

$H \ll m_a$

Field oscillates & damps. WKB (or exact) \rightarrow $\rho_a \approx \rho_a (a_{\rm osc}) a^{-3}$

Homogeneous scalar \sim matter Inhomogeneities \rightarrow gradients \rightarrow pressure

Fuzzy Dark Matter

DJEM, Physice Reports (2016) Hui et al PRD (2017)

Image: Veltmaat et al (2018); FDM Simulation

z = 1.07 2.5 Mpc/h Light axions depart from standard CDM in their dynamics. De Broglie wavelegnth suppresses formation of structure.

CMB Baseline

Amendola & Barbieri (2006) Hlozek, DJEM et al (2015) axionCAMB

Non-linear Scales

Fundamentally different from CDM/WDM/SIDM Non-rel limit of Klein-Gordon Einstein \rightarrow Schrodinger-Poisson

$$i\dot{\psi} + \frac{1}{2m_a^2}\nabla^2\psi - m_a\Phi\psi = 0; \ \nabla^2\Phi = 4\pi G_N|\psi|^2$$

Related to the smoothed Vlasov equation. Field equation not a particle distribution function \rightarrow "non-linear optics" regime. Madelung transformation (polar co-ords) \rightarrow fluid system:

$$\dot{\delta} + \vec{v} \cdot \nabla \delta = (1+\delta)\nabla \cdot \vec{v}$$
$$\dot{\vec{v}} + (\vec{v} \cdot \nabla)\vec{v} = -\nabla(\Phi+Q)$$
$$Q = -\frac{1}{2m^2}\frac{\nabla^2\sqrt{1+\delta}}{\sqrt{1+\delta}}$$

continuity

Euler

Quantum Pressure : source of interference effects

FDM Simulations

Schive et al (2014)

FDM Simulations

Schwabe et al (2016). Blob size ~ kpc, lifetime ~ 10^{6} years (10^{-22} eV/m)

Halo Mass Function

DJEM & Silk (2014); Du et al (2016) Corasaniti, DJEM et al (2017)

Suppressed power \rightarrow no low mass halos/subhalos.

In the field: no high-z low mass halos \rightarrow reduced early star formation \rightarrow later reionization.

In the MW: no low mass satellites / subhalos. Constrained by tidal streams?

Dynamical Effects

Hui et al (2017);Veltmaat et al (2018) Lin et al (2018); Khlemeninsky & Rubikov (2014)

The FDM halo is not static on times $< 1/mv^2 \sim 10^6$ years. Pressure oscillations on Compton times \rightarrow pulsar timing. "Wavelets" \rightarrow quasiparticles and dynamical relaxation.

$$t_{\rm relax}(r) \sim \frac{0.4}{f_{\rm relax}} \frac{m^3 v^2 r^4}{\pi^3 \hbar^3} \sim \frac{1 \times 10^{10} \,{\rm yr}}{f_{\rm relax}} \left(\frac{v}{100 \,{\rm km \ s^{-1}}}\right)^2 \left(\frac{r}{5 \,{\rm kpc}}\right)^4 \left(\frac{m}{10^{-22} \,{\rm eV}}\right)^3$$

Axion Stars and Cores

Density profiles show prominent cores. Pressure supported solitons.

Solitons alone cannot explain dSph cores: "Catch 22" as WDM. Other observational effects of enhanced density? Recent simulations seem to show strong core oscillations.

Axion Star Birth & Death

Levkov et al (2016) Helfer, DJEM et al (2016)

Axion stars are relevant beyond FDM. Should form in all models.

Axion Star Birth & Death Helfe

Levkov et al (2016) Helfer, DJEM et al (2016)

Core-halo mass relation \rightarrow growth quenches for FDM. Are there relativistic axion stars? Axion novae? ECOs and GWs?

FDM Direct Detection

Detection relies on mass \rightarrow Compton frequency. FDM ~ 10⁻⁷ Hz. Neutron EDM @ PSI and ILL measured for '98-'02 and '15-'16. \rightarrow First lab costraints on axions at this frequency (scalar DM easier)

FDM Direct Detection

Detection relies on mass \rightarrow Compton frequency. FDM ~ 10⁻⁷ Hz. Neutron EDM @ PSI and ILL measured for '98-'02 and '15-'16. \rightarrow First lab costraints on axions at this frequency (scalar DM easier)

Miniclusters & Microlensing

Fairbairn, DJEM, Quevillon, PRL (2017); Fairbairn, DJEM, Quevillon, Rozier, PRD (2017)

Image: the Subaru Hyper Suprime Cam

KWON, O CHUL

Miniclusters depart from standard CDM in initial conditions. Post-inflation symmetry breaking \rightarrow large field fluctuations + relics. This extra source of fluctuations produces axion relics + structure.

Minicluster Mass Scale

Axion randomises beyond horizon \rightarrow Large isocurvature fluctuations \rightarrow Mass inside horizon when m~H collapses early.

Smaller than smallest WIMP structures (10⁻⁶). Axions are very cold.

The amount of DM in compact objects is strongly constrained:

How do these constraints translate to miniclusters (or e.g. UCMHs)? What is the relic density, mass, and size distribution of miniclusters?

Numerical Simulations

See also Hardy (2017), Zurek et al (2007)

Kolb & Tkachev (1990's): field simulations w/ no gravity. → Mass and radius scale. Wiebe, Redondo, Niemeyer (2017): SSB i.c.'s w/ strings + Nbody during rad. era.

Microlensing: non-pointlike objects

Paramterise the density profile based on initial overdensity, δ .

Effects described by a rescaling of the "microlensing tube": $R_{\rm MC}(\delta, M, x) = \mathcal{R}(\delta, M) R_{\rm E}(M, x)$ # lensing events depends on density profile and distribution of sizes.

Density Profiles

Above some value of δ miniclusters are effectively point-like lenses. The transition depends on the assumed density profile.

Self-similar infall \rightarrow power law density profile for isolated objects. Mergers + environment \rightarrow NFW density profile.

Size Distribution

Size distribution: see also Ensander et al (2017) Extrapolation: Javier Redondo private comm.

Minicluster density field is non-Gaussian due to axion interactions. Kolb & Tkachev sims → wide distribution for characteristic density:

$$\rho_{\rm MC} = 140\delta^3 (1+\delta)\bar{\rho}_a (1+z_{\rm eq})^3$$

→ Non-Gaussian distribution of sizes. Key to results.

Tisserand et al (2007) Niikura et al (2017) Niikura et al (2017) Fairbairn, DJEM et al (2017)

We constrain the allowed fraction of DM bound in MCs, f_{MC} . Mass lower limit: telescope cadence. Upper limit: observing time.

Subaru HSC observed M31. Cadence ~2minutes → access to very low masses.

Constraints from single night observing!

 $f_{\rm MC} < 0.083 (m_a/100 \mu {\rm eV})^{0.12}$

Lots of assumptions in this number: improved modeling needed.

Miniclusters & Axion Astronomy

Many new high frequency (>GHz) axion experiments are being built.

If miniclusters fraction is large \rightarrow drastic effect on direct detection. But, MC streams could be detected in spectra \rightarrow measure halo. Axion experiments can measure the whole DM phase space dist.!

Axions in Particle Physics & String Theory

Fine tuning in theoretical Physics $\mathcal{L} = (number) \times (operator)$

=the value you measure for the effect. =physical effect.The neutron EDM.

$$(number) = \sum_{(physics)} c_i \longrightarrow Contributions from different sources. Strong and weak nuclear forces.$$

The nEDM is measured consistent with zero. This implies a delicate cancellation at $\sim 10^{-10}$. We don't like coincidences.

Cleaning up the mess

Spontaneous symmetry breaking: a Goldstone Boson, θ , has a continuous "shift symmetry", i.e. the underlying rotation.

"instantons"

Trick: couple a Goldstone to the problematic operator.

$(number) \to (number) + \theta \to \theta$

Now ''tilt the wine bottle'': θ will now dynamically move to a fixed value = 0 by symmetry \rightarrow no problematic nEDM.

BONUS: the oscillations of θ carry energy density \rightarrow DM! BUT: axions are some 10¹⁵ times lighter than "WIMPs"!

Kaluza-Klein and String Theory

GR: fields describe the geometry of space. Cosmology: the scale factor.

A torus has two "moduli" that describe its shape. In general, # of fields given by topology.

String theory \rightarrow SUSY \rightarrow moduli are "paired" with AXIONS. 10 dimensions can be a lot more complicated than a donut.

Extra dimensions and SUSY can both "hide" at high energies near the Planck scale. Many "flavours" of axions a generic, low-energy, prediction.

Dark Matter

Dark Energy

Inflation

Baryogenesis

Learn More

*Based on 2011 Consumer Research