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Two models of CDM
WIMPs

Predicted ~1970’s
Naturally come from SUSY.

Heavy, nucleon mass.
Thermal.

“Traditional” search strategies.
…

Axions
Predicted ~1970’s

Come from strong-CP.
v. light, sub-neutrino mass. 

Non-thermal.
“Non-traditional” search strategies.

…

Cold due to small thermal 
velocities

Collisions necessary for 
production

“Cold” due to coherence 
and small wavelength
Interactions via wave 

equations

Axions are just a type of CDM, with different 
extreme limits than thermal DM



On Axions and WIMPs
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On Axions and WIMPs

Predicted interaction strength for WIMPs has already been excluded.
Soon experiments will hit the “neutrino floor”.

Fig. RESONAANCES.blogspot
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On Axions and WIMPs

The QCD axion is essentially a one-parameter model.
Only one experiment has got into the range to probe DM.



What makes an ALP?
An ALP is a non-thermally produced classical scalar field.
ALPs differ from CDM in initial conditions & dynamics.

Symmetry breaking leading 
to axion relic density
à Dense DM relics
à “Miniclusters”
à Microlensing constraints a 

la PBHs
à Important for the 

standard QCD axion
à Smallest DM structures

Uncertainty principle
à Small-scale coherence and 

dynamic halos
à Suppression of structure
à Formation of solitonic 

“axion stars”
à Pronounced for ultralight 

“Fuzzy DM” , m~10-22 eV
à Lightest DM particle



“Miniclusters”: dense clumps 
from initial conditions (c.f. 
MACHOs). Sub-lunar mass. 
Classic QCD axion window.

“Fuzzy DM”: diffuse due to 
macroscopic wavelength (c.f. 
warm DM). Dwarf galaxy scales.
String theory axions?



The Life of 
Axions
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Spontaneous Symmetry Breaking à (p)NGB
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temperature of phase transition: �'
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The axion is born:
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Spontaneous Symmetry Breaking à (p)NGB

The “decay constant” determines 
temperature of phase transition:
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Spontaneous Symmetry Breaking

Symmetry breaking à relics
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Vacuum Realignment
Axion acquires mass, evolves according to Klein-Gordon:

�̈+ 3H�̇+m
2
a� = 0

H � ma

Axion is “frozen” by 
Hubble friction term. 
) ⇢a ⇡ const.
) wa ⇡ �1

H



Vacuum Realignment
Axion acquires mass*, evolves according to Klein-Gordon:

�̈+ 3H�̇+m
2
a� = 0

ma

H ⌧ ma

Field oscillates & damps.
WKB (or exact) à
⇢a ⇡ ⇢a(aosc)a

�3

Homogeneous scalar ~ 
matter
Inhomogeneities à 
gradients à pressure



Fuzzy Dark Matter
DJEM, Physice Reports (2016)

Hui et al PRD (2017)

Image: Veltmaat et al (2018); FDM Simulation



Light axions depart from standard CDM in their dynamics.
De Broglie wavelegnth suppresses formation of structure.

Galactic 
Halos

Wavelike 
effects

largerr smaller

kJ,eq = 9(ma/10
�22eV)1/2 Mpc�1

e.g. DJEM (2016)



CMB Baseline Amendola & Barbieri (2006)
Hlozek, DJEM et al (2015) axionCAMB



Non-linear Scales
Fundamentally different from CDM/WDM/SIDM etc.
Non-rel limit of Klein-Gordon-Einstein à Schrodinger-Poisson:

e.g. Widrow & Kaiser (1993); Chavanis (2011+);
DJEM (2015,2016); Hui et al (2016)
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Related to the smoothed Vlasov equation. Field equation not a 
particle distribution function à “non-linear optics” regime.

�̇ + ~v ·r� = (1 + �)r · ~v

Madelung transformation (polar co-ords) à fluid system:
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continuity

Euler

“Quantum Pressure”: source 
of interference effects



Schive et al (2014)

FDM Simulations



Schwabe et al (2016). Blob size ~ kpc, lifetime ~ 10^6 years (10-22 eV/m)

FDM Simulations



Halo Mass Function
Suppressed power à no low mass halos/subhalos.

DJEM & Silk (2014); Du et al (2016)
Corasaniti, DJEM et al (2017)
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In the field: no high-z low mass 
halos à reduced early star 
formation à later reionization.

In the MW: no low mass 
satellites / subhalos. 

Constrained by tidal streams?

Mc ⇡ 108(m/10�22eV)�1.35M�



Dynamical Effects
The FDM halo is not static on times < 1/mv2 ~ 106 years.
Pressure oscillations on Compton times è pulsar timing.
“Wavelets” à quasiparticles and dynamical relaxation.

Hui et al (2017); Veltmaat et al (2018)
Lin et al (2018); Khlemeninsky &Rubikov (2014)

Simulation, 
dwarf

Self-
consistent, 
MW



Axion Stars and Cores
Density profiles show prominent cores. Pressure supported solitons.

R>λdB 
àNFW

Soliton
à core

Schive et al (2014+); Veltmaat et al (2018)  
Gonzalez-Morales, DJEM et al (2017)
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Solitons alone cannot explain dSph cores: “Catch 22” as WDM.
Other observational effects of enhanced density?
Recent simulations seem to show strong core oscillations.



Axion Star Birth & Death
Axion stars are relevant beyond FDM. Should form in all models.

Levkov et al (2016)
Helfer, DJEM et al  (2016)



Axion Star Birth & Death
Core-halo mass relation à growth quenches for FDM. Are there 
relativistic axion stars? Axion novae? ECOs and GWs?

Levkov et al (2016)
Helfer, DJEM et al  (2016)
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FDM Direct Detection Abel, DJEM et al (2017)
Students: Michal Rawlik, Nick Ayres

Detection relies on mass è Compton frequency. FDM ~ 10-7 Hz.
Neutron EDM @ PSI and ILL measured for ’98-’02 and ‘15-’16.
à First lab costraints on axions at this frequency (scalar DM easier)



FDM Direct Detection Abel, DJEM et al (2017)
Students: Michal Rawlik, Nick Ayres

Detection relies on mass è Compton frequency. FDM ~ 10-7 Hz.
Neutron EDM @ PSI and ILL measured for ’98-’02 and ‘15-’16.
à First lab costraints on axions at this frequency (scalar DM easier)



Miniclusters & Microlensing
Fairbairn, DJEM, Quevillon, PRL (2017); 

Fairbairn, DJEM, Quevillon, Rozier, PRD (2017)

Image: the Subaru Hyper Suprime Cam



Miniclusters depart from standard CDM in initial conditions.
Post-inflation symmetry breaking à large field fluctuations + relics.
This extra source of fluctuations produces axion relics + structure.

Galactic 
Halos

Miniclusters

largerr smaller



Minicluster Mass Scale Hogan & Rees (1988)
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QCD axion 

M0 ⇡ 10�10M�

QCD axion:

Axion randomises beyond horizon à Large isocurvature fluctuations
à Mass inside horizon when m~H collapses early.

M0 = (4/3)⇡(⇡/k)3

Smaller than smallest WIMP structures (10-6). Axions are very cold.



The amount of DM in compact objects is strongly constrained:

How do these constraints translate to miniclusters (or e.g. UCMHs)?
What is the relic density, mass, and size distribution of miniclusters?

Fig: Niikura et al (2017)



Numerical Simulations

Kolb & Tkachev (1990’s): field 
simulations w/ no gravity.
à Mass and radius scale.

Wiebe, Redondo, Niemeyer 
(2017): SSB i.c.’s w/ strings + N-
body during rad. era.

See also Hardy (2017), 
Zurek et al (2007)



Paramterise the density profile based on initial overdensity, δ.

Effects described by a rescaling of the “microlensing tube”:
RMC(�,M, x) = R(�,M)RE(M,x)

Microlensing: non-pointlike objects

# lensing events depends on density profile and distribution of sizes.



NFW profile

Density Profiles

Self-similar infall à power law density profile for isolated objects.
Mergers + environment è NFW density profile.

Above some value of δ miniclusters are effectively point-like lenses.
The transition depends on the assumed density profile.



Size Distribution
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Size distribution: see also Ensander et al (2017)
Extrapolation: Javier Redondo private comm.

Minicluster density field is 
non-Gaussian due to axion 
interactions.
Kolb & Tkachev sims à 
wide distribution for 
characteristic density:

⇢MC = 140�3(1 + �)⇢̄a(1 + zeq)
3

We use this to set the radius of minicluster density profiles
à Non-Gaussian distribution of sizes. Key to results.



Constraints: EROS and HSC
We constrain the allowed fraction of DM bound in MCs, fMC.
Mass  lower limit: telescope cadence. Upper limit: observing time.

Tisserand et al (2007)
Niikura et al (2017)

Fairbairn, DJEM et al (2017)

fMC < 0.083(ma/100µeV)0.12

Subaru HSC observed 
M31. Cadence ~2minutes 
à access to very low 
masses.

Constraints from single 
night observing!

NFW 
Profile

Lots of assumptions in this number: improved modeling needed.



Miniclusters & Axion Astronomy

If miniclusters fraction is large à drastic effect on direct detection.
But, MC streams could be detected in spectra à measure halo.
Axion experiments can measure the whole DM phase space dist.!

Many new high frequency (>GHz) axion experiments are being built.

O’Hare & Green (2017)

ADMX-HF
MADMAX
[unnamed]
SN1987A

Miniclusters!



Axions in Particle 
Physics & String 

Theory



Fine tuning in theoretical Physics
L = (number)⇥ (operator)

(number) =
X

(physics)

ci

=physical effect. The 
neutron EDM.

=the value you measure 
for the effect.

The nEDM is measured consistent with zero. This implies a 
delicate cancellation at ~10-10. We don’t like coincidences.

Contributions from 
different sources. 
Strong and weak 

nuclear forces.



Spontaneous symmetry breaking: a 
Goldstone Boson, θ, has a continuous “shift 
symmetry”, i.e. the underlying rotation.

(number) ! (number) + ✓ ! ✓
Trick: couple a Goldstone to the problematic operator.

Now “tilt the wine bottle”: θ will now dynamically move to a 
fixed value = 0 by symmetry à no problematic nEDM.

BONUS: the oscillations of θ carry energy density à DM!
BUT: axions are some 1015 times lighter than “WIMPs”!

Cleaning up the mess

“instantons”



Kaluza-Klein and String Theory
GR: fields describe the geometry of space. Cosmology: the scale factor.

A torus has two “moduli” that 
describe its shape.
In general, # of fields given by 
topology.

String theory à SUSY à moduli are “paired” with AXIONS.
10 dimensions can be a lot more complicated than a donut.



Extra dimensions and SUSY can both “hide” at high energies near the 
Planck scale. Many “flavours” of axions a generic, low-energy, prediction. 


