Substructure abundance and the haloes of Milky Way dwarfs

Raphaël Errani

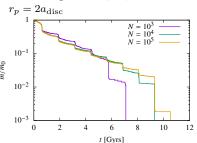
News from the Dark meeting

Montpellier, 24 May 2018

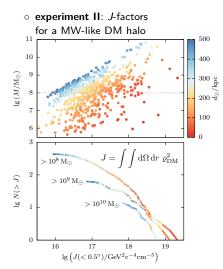
abbreviated version for the web 1/15

Motivation: preventing artificial disruption of low-mass substructures

- o cosmological simulations resolve dwarf galaxies with a finite number of particles, e.g. at $M\sim 10^8~{\rm M}_{\odot}$, for Aquarius-A2 (Springel 2008), $N\sim 10^4$
- \circ experiment I: MW-like host: NFW halo, disc, bulge; dSph satellite, $\gamma=1,$ $5\times10^8~{\rm M}_{\odot},~a=1~{\rm kpc};$ polar orbit



no convergence for low N! (see van den Bosch 2018: up to 80 per cent *artificial* disruption)



low-mass substructures might produce the dominant effect!

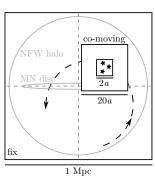
i) Substructure abundance in Milky Way-like haloes: Numerical setup

this project: assembly of a MW-like halo through single accreted satellites with equal numerical resolution over many orders of magnitude in mass (motivated by Bullock & Johnston 2005) first application: how does the presence of a disc alter the abundance of DM substructures as a function of the satellite DM profile (cusp/core)?

host:

- o spherical NFW halo, evolution fitted to Aq-A2 run (Buist & Helmi 2015)
- $\circ~$ optional: axisymmetric disc of mass $0.1\,M_{200}(z)$ (Miyamoto & Nagai 1975)

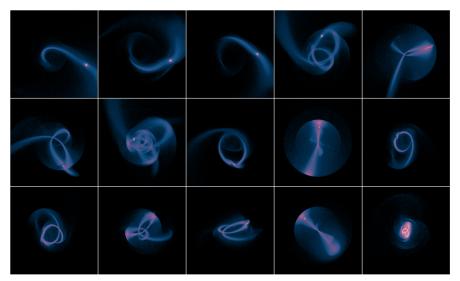
- Aq-A2 tree at $z_{
 m infall}$ $\circ \ M_{200} > 10^8 \ {
 m M}_{\odot} \mbox{, 960 in total}$
- \circ r_{200} from mass-concentration relation (Prada 2012)
- $\begin{array}{l} \circ \; N\text{-body:} \; 2\times 10^6 \; \text{particles} \; (\text{CCCP-II:} \; 10^7) \\ \rho(r) = \frac{\rho_c}{\left(r/a + r_c/a\right) \left(r/a + 1\right)^3} \\ \text{cusp} \; r_c = 0, \; \text{core} \; r_c > 0 \end{array}$
- \circ injected in host potential at $z_{
 m infall}$



 \circ SUPERBOX, multi-grid PM code, $\mathcal{O}(dx^2)$ (Fellhauer 2000)

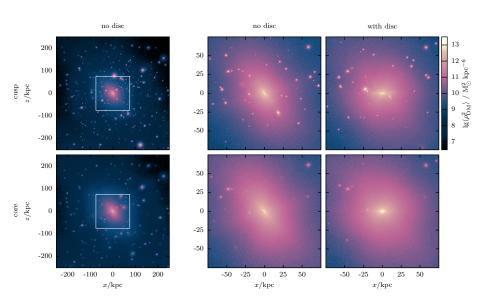
$$\begin{array}{l} \circ \ dx = 2\,r_{-2}/64 \ (\text{CCCP-II:}\ 2\,r_{-2}/128\) \\ dt = \min\left(1\,\text{Myr}, t_{\text{dyn}}(r_{-2})/400\right) \end{array}$$

Controlled simulations



selected individual cuspy satellites at z=0, box width $1\,\mathrm{Mpc}$

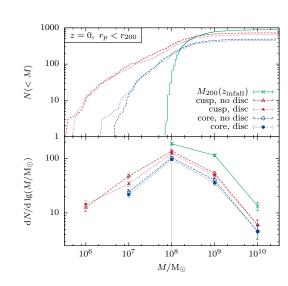
Controlled simulations



Substructure abundance at z=0

as a function of mass:

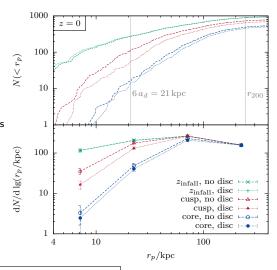
- masses estimated by iteratively fitting Hernquist profiles to particles of each satellite (limits impact of extra-tidal features)
- $\circ~$ no surviving cored substructures with $M \leq 2.5 \times 10^6 \ {\rm M_{\odot}}$
- shape of the mass spectrum does not change between models
- \circ cored models have ~ 2 times less substructures than cuspy ones
- \circ including a disc reduces the total number of substructures by ~ 20 per cent



Substructure abundance at z = 0

as a function of the galactocentric distance \boldsymbol{r}_p of the first pericentric passage:

- $\circ~$ no cored substructures with $r_p \lesssim 8\,\mathrm{kpc}$
- \circ for large r_p the number of satellites per pericentre bin converges to similar values for all models
- o the difference between the models is largest for satellites on orbits that penetrate the disc $(r_p \lesssim 6a_d)$: factor ~ 4 between cusp/core, factor $\lesssim 2$ between no disc/disc



RE, J. Peñarrubia, C. Laporte & F. Gómez, arXiv:1608.01849

ii) The haloes of Milky Way dwarfs: dynamical mass estimates

Using the Jeans equations?

$$M(< r) = \frac{R\sigma_{\rm r}^2(r)}{G} \left(\frac{\mathrm{d} \ln \nu_{\star}(r)}{\mathrm{d} \ln r} + \frac{\mathrm{d} \ln \sigma_{\rm r}^2(r)}{\mathrm{d} \ln r} + 2\beta(r) \right) \qquad \text{where} \qquad \beta \equiv 1 - \frac{\sigma_{\rm r}^2}{\sigma_{\perp}^2} \qquad \text{(e.g. BT87)}$$

mass - anisotropy degeneracy:

- o $\beta(r)$ is (practically) inaccessible to observations (but: 3D motions in Sculptor, Massari+18) \circ $\beta(r)$ does not need to be a monotonic function of r, and might vary between different stellar
- populations within the same dwarf \circ Read+17 show that with 10^4 stars and Jeans analysis, $\beta(r)$ can't be recovered robustly

Projected Virial theorem: (e.g. Merrifield+90, more recently Agnello+12, Richardson+14)

$$2K_{\mathrm{los}}+W_{\mathrm{los}}=0$$
 o no mass - all

Pressure term:

$$2K_{\rm los} = 2\pi \int_0^\infty \Sigma_{\star} \sigma_{\rm los}^2 R dR \equiv \langle \sigma_{\rm los}^2 \rangle$$

Potential term for spherical systems:

$$W_{\rm los} = -\frac{4\pi G}{3} \int_0^\infty r \nu_{\star}(r) M(\langle r) dr$$

Mass and dispersion are related by:

of tracers: Laporte+18)

o systematic biases of inferred masses follow directly from the assumptions on the DM

and stellar density profiles
$$\circ \ \langle \sigma_{\rm los}^2 \rangle \ {\rm is \ a \ sum \ over \ all \ stars \ and \ does \ not \ require \ data \ to \ be \ binned: \ can \ be \ robustly \ computed \ also \ for \ systems \ with \ a \ low}$$

number of stars (uncertainties for low number

$$M(< R) = G^{-1} \ \mu \ R \ \langle \sigma_{\rm los}^2 \rangle$$
 with $\mu(R) = -G \ M(< R) \ R^{-1} \ W_{\rm los}^{-1}$

Minimum variance values for λ, μ

Given an observed half-light radius $R_{\rm h}$ motivates to write (e.g. Amorisco+12):

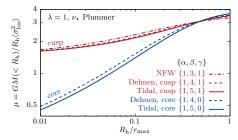
$$M_{\rm est}(\langle \lambda R_{\rm h}) = G^{-1} \ \mu \ \lambda R_{\rm h} \ \langle \sigma_{\rm los}^2 \rangle$$

 μ is a function of segregation $R_{
m h}/r_{
m max}!$

For DM $\{\alpha, \beta, \gamma\}$ density profiles

$$\varrho(r) = \varrho_s \left(\frac{r}{r_s}\right)^{-\gamma} \left[1 + \left(\frac{r}{r_s}\right)^{\alpha}\right]^{(\gamma - \beta)/\alpha}$$

and Plummer $\{2,5,0\}$ stellar tracers:

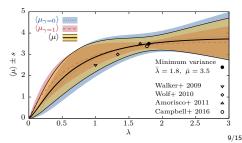


Which choice of **constants** for λ,μ minimizes the uncertainty on the inferred masses introduced by our ignorance of

- $\circ\,$ the segregation $R_{\rm h}/r_{\rm max}$
- \circ the central slope γ of the DM profile ? Marginalize over segregation and γ (flat priors):

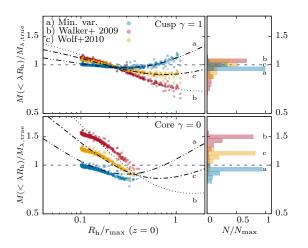
$$\langle \mu(\lambda) \rangle = \int_0^1 \mathrm{d}(R_\mathrm{h}/r_\mathrm{max}) \int_0^1 \mathrm{d}\gamma \; \mu$$
 variance $= \langle \mu(\lambda)^2 \rangle - \langle \mu(\lambda) \rangle^2$

minimum variance: $\bar{\lambda}=1.8$, $\bar{\mu}=3.5$



Consistency test using mock dwarf galaxies

We assign mass-to-light ratios at infall to the DM particles of our MW-halo re-simulations to trace the tidal evolution of an embedded stellar population (see Bullock & Johnston 2005)

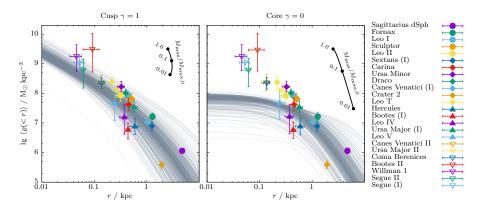


Minimum variance estimator gives accurate masses within ${\sim}10\%$ for both cuspy and cored systems

Mean densities of Milky Way dwarfs vs controlled simulations

- \circ $R_{
 m h}$ and $\langle \sigma_{
 m los}^2
 angle$ of Milky Way dwarfs taken from McConnachie 2012
- \circ Enclosed masses $M(<1.8\,R_{
 m h})$ estimated using the minimum-variance estimator
- Mean density: $\langle \rho(<1.8\,R_{\rm h})\rangle = M(<1.8\,R_{\rm h})(4\pi/3)^{-1}(1.8\,R_{\rm h})^{-3}$

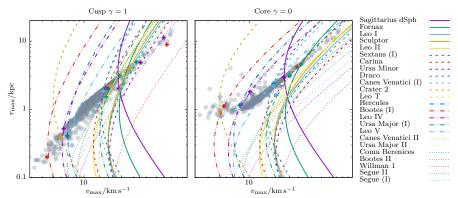
Compared against our cuspy and cored simulated haloes: (Aq-A2 re-simulations, 10^7 particles per satellite):



Ultra-faint dwarfs require core sizes much smaller than the DM scale radius

(Total) DM halo masses of Milky Way dwarfs

Observed $R_{\rm h} + \langle \sigma_{\rm los}^2 \rangle + 2$ parameter halo model $\to r_{\rm max}, v_{\rm max}$ degeneracy curves:



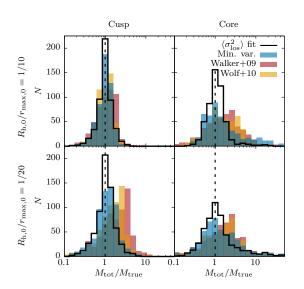
breaking the degeneracy: we fit the observed dispersions $\langle \sigma_{\rm los}^2 \rangle$ to simulated haloes

$$\langle \sigma_{\rm los, sim}^2 \rangle = -W_{\rm los} = \frac{4\pi G}{3} \int_0^\infty r \nu_{\star}(r) M(< r) \, \mathrm{d}r$$

by selecting the halo which minimizes

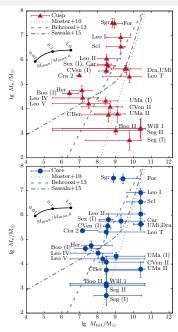
$$\chi^2_{\langle\sigma^2_{\rm los}\rangle} = \left(\langle\sigma^2_{\rm los}\rangle - \langle\sigma^2_{\rm los,sim}\rangle\right)^2 \, {\rm var}^{-1} \left(\langle\sigma^2_{\rm los}\rangle - \langle\sigma^2_{\rm los,sim}\rangle\right) \quad \to \, {\rm crosses} \, ++++ \, {\rm in \, figure}$$

Consistency test using mock dwarf galaxies



The (total) halo masses inferred using direct $\langle \sigma_{\rm los}^2 \rangle$ -fits for the mock catalogue are unbiased.

Stellar mass - halo mass relation for satellite galaxies



Ultra-faint dwarfs: anti-correlation of stellar mass - halo mass

Possible causes:

- Binary motion inflates the observed velocity dispersion
- \circ Contamination by foreground stars e.g. Adén+09: $\sigma_{\rm los}$ for Hercules $7\,{\rm km/s} o 4\,{\rm km/s}$
- Systems not in equilibrium
- Aq-A2 merger does not contain haloes representative of ultra-faints (cosmic variance?)
- \circ Use the virial theorem to avoid mass anisotropy degeneracy: $M(<\lambda R_{\rm h})=G^{-1}\mu\lambda R_{\rm h}\langle\sigma_{\rm los}^2\rangle$
- o $\lambda=1.8, \mu=3.5$ for minimum-variance mass estimates
- \circ Direct fits of $\langle \sigma_{\rm los}^2 \rangle$ allow to infer the (total) halo mass
- o Something odd is going on with ultra-faints

RE, J. Peñarrubia, M. Walker, arXiv:1805.00484

We reliably resolve low-mass substructures: e.g. for haloes with $M(z_{\rm infall})=10^8\,{\rm M_\odot}$, we have $m_p\sim 10\,{\rm M_\odot}$, and we follow the dynamical evolution of substructure with the same numerical resolution spanning many orders of magnitude in mass and size.

(future) applications:

- $\circ\,$ dynamical properties of DM: abundances (E+16), annihilation signals, J-factors
- structure of stellar haloes: abundance and distribution of ultra-faints, number of streams in the solar neighbourhood, mass-luminosity relation for Milky Way dwarfs (E+18) formation mechanisms for ultra-diffuse galaxies (see C+18 arXiv:1805.06896),
- convolve our models with Gaia-uncertainties;
 predictions on the number and properties of detectable faint streams and remnant progenitors

web: www.roe.ac.uk/~raer, mail: raer@roe.ac.uk