News from (/in/about) the dark

Episode 3 : Gaia's lights and

the good, the bad, and the ugly of dark matter scenarios

Montpellier - May 23-25 2018

PROGRAMME NATIONAL DE COGMOLOGIE ET GALAXIEG

WELCOME!

Julien Lavalle CNRS LUPM-Montpellier, Theory Group

News from/in/about the Dark (3) Montpellier, May 23-25 2018

SOC: Benoit Famaey, JL. LOC: Thomas Lacroix, JL, Martin Stref Secretary (travel/stay): Lydie Le Clainche Secretary (logistic): Amel Chennouf

Practical

- Salle des Actes (build. 7): talks, breaks, discussions Wed.-Thu.
- Friday morning in Room ???
- Rooms can be locked but no insurance cover in case of robbery.
- WIFI: network is "UM-Net", then try login and pwd written on folder.
- or EDUROAM
- Lunches:
 - Cafeteria on the campus (follow those who know or check the map)
 - Lunch tickets include: starter + main course + dessert + drink + coffee
- Dinners:
 - Wednesday: free
 - Thursday: social dinner at Le Petit Jardin (20, rue Jean-Jacques Rousseau)
- Any question? Ask Martin, Thomas, or myself.
- Goodies: a pack available at the entrance.
- Advice: buy 10-travel tram tickets (more practical, less expensive).

Formal acknowledgments

CNRS/IN2P3 funding for interdisciplinary theoretical networking project "Galactic Dark Matter" (P.I. JL/Montpellier + colleagues from IAP-Paris, LAM-Marseille, LAPTh-Annecy, Obs. Strasbourg, Oxford, Stockholm – can be extended) – 2017-2020.

<u>Goal/s:</u> address dark matter issue/searches on the Galactic scale by putting together astroparticle physicists + astrophysicists/cosmologists expert in galactic dynamics and structure formation.

<u>Means:</u> mini-worskhops (1 or 2/year) + collaborative visits. Small number of motivated people.

<u>Constraints:</u> for non-CNRS/IN2P3 members, only travels to steering lab; hence @Montpellier for this project.

Dark matter: successes and issues

So far, only gravitational evidence for DM (cosmological structures+CMB)

CDM successes:

- CMB peaks
- Successful structure formation (from CMB perturbations)
- => CDM seeds galaxies, galaxies embedded in DM halos
- Lensing in clusters + rotation curves of galaxies
- Also consistent with Tully-Fisher relation (baryonic physics)

How cold?

<u>Cold enough to form/bind Dwarf Galaxies:</u> <u>Cold enough to be consistent with Lyman-alpha forest</u>

=> Constraints on DM candidates depending on spin and production mechanism.

=> WDM and/or CDM allowed, but then WDM is almost CDM.

A SCENARIO NOT DEVOID OF ISSUES: \rightarrow NOT DISCOVERED YET

 \rightarrow **ISSUES ON SMALL SCALES** (eg Bullock & Boylan-Kolchin '17):

1) The core-cusp / diversity pb

Some galaxies better fitted with DM cores than with predicted cusps (e.g. NFW profile) + apparent mass deficit in inner parts.

2) The "missing" satellite pb / too-big-to-fail pb

- * CDM predicts more satellite galaxies than observed.
- * Big satellites should retain their baryons (too-big-to-fail)
- **!!!** Statistics has changed recently (SDSS, DES)
- ++ impact of cosmo params

3) Others: MDAR (eg McGaugh+), satellite planes (Pawlowski+, Ibata+)

CDM: solutions to small scale issues?

CDM + more realistic physics for baryons => cusps are flattened (From star formation: UV + winds + SN feedback)

- * CDM/WDM: baryonic effects (?)
- \rightarrow must be there, but to what extent?
- * Other classes of DM:
- → self-interacting DM (SIDM)
- → ultra-light bosonic dark matter (ULDM)

Solutions to missing satellite problem: (and too-big-to-fail pb) * CDM: baryonic effects (?) * WDM * SIDM * ULDM

CDM: solutions to small scale issues?

CDM + more realistic physics for baryons => cusps are flattened (From star formation: UV + winds + SN **feedback**)

Actively debated!!! Baryonic physics must play a role on small scales anyway

Solutions to missing satellite problem: (and too-big-to-fail pb)

* CDM: baryonic effects (?) * WDM * SIDM * ULDM

Selected intriguing observations

Mass discrepancy-acceleration relation

MOND (Milgrom+'83) works on small scales but fails on large scales + CMB + structure formation => covariant forms challenging

Guiding principle for model building? Talk by Benoit Famaey

"Diversity" problem: very different inner vcir curves for halos of similar masses (vmax). (another way to say core/cusp pb). 100 80 60 Oman+'15 40 UGC 5721 UGC 11707 DMO sims: LG-MR + EAGLE-HR DMO sims: LG-MR + EAGLE-HR $V_{
m circ} \, [{
m km \ s}^{-1}]$ 0 07 07 $V_{\rm max} = 89 \ {\rm km \ s^{-1}} \pm 10\%$ [113] $V_{\rm max} = 101 \ \rm km \ s^{-1} \ \pm 10\%$ [73] Hydro sims: LG-MR + EAGLE-HR Hydro sims: LG-MR + EAGLE-HR $x = 89 \text{ km s}^{-1} \pm 10\%$ [113] $V_{\rm max} = 101 \ {\rm km \ s^{-1}} \pm 10\%$ [73] 60 40 LSB F583-1 IC 2574 DMO sims: LG-MR + EAGLE-HR DMO sims: LG-MR + EAGLE-HR, = 88 km s⁻¹ ±10% [120] $_{\rm ax} = 80 \ \rm km \ s^{-1} \ \pm 10\% \ [149]$ 20 Hydro sims: LG-MR + EAGLE-HF Hydro sims: LG-MR + EAGLE-HR $=88 \text{ km s}^{-1} + 10\%$ [120 $-80 \text{ km s}^{-1} + 10\%$ [149] 0 0 12 0 2 12 14 2 10 6 8 10 6 8 Radius [kpc]

> Core/cusp issue more severe in small galaxies, with vmax~80km/s (e.g. diversity of v-curves) Remaining observational biases?

e.g. gas circular motion ~ biased inner measurement because of pressure support

(~ 5km/s in central kpc)

Core in the MW? Talk by James Binney

Can baryons rescue CDM?

Baryonic physics?

- \rightarrow Still rather empirical / simplistic in simulations, but rapid progresses
- \rightarrow Several ways to implement feedback
- \rightarrow Not only supernova feedback, but also stellar feedback (e.g. H2 dissociation)
- \rightarrow Complicated BUT BARYONS DO EXIST! May solve issues in the end.

Main assumption: General relativity is correct on all relevant scales => DM = exotic matter/fluid (new degrees of freedom beyond GR can be recast in terms of some field equations anyway)

Two main approaches

* **Top-bottom** "DM is a consequence" Talk by Florian Kuhnel

+++++ Primordial Black Holes (as consequences of inflation) ++++++ (eg Carr+'16)

* **Bottom-up** "DM is a requirement" Owing to lack (or failure) of reliable theoretical guiding principles in particle model building, current tendency is: consistent QFT + observational constraints

→ Constraints assuming a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: **m** > **1-5** keV (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters!**

\rightarrow Constraints assuming a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: **m** > **1-5** keV (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters!** * **Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems!**

Liouville's theorem for non-interacting fermions, assuming they were close to FD distribution in early universe

$$f_{\nu}(p,T) = \frac{g_{\nu}}{(2\pi)^3} \frac{1}{e^{E/T} + 1} \xrightarrow{\max} \frac{g_{\nu}}{2(2\pi)^3} \ge \frac{\rho(r)}{m_{\nu}} \times \left\{ f(p) = \frac{e^{-\frac{p^2}{2m_{\nu}^2 \sigma_v^2}}}{(2\pi m_{\nu}^2 \sigma_v^2)^{3/2}} \right\}$$

 $\rho(r) = \frac{9 \sigma_v^2}{4 \pi G (r + r_0)^2}$ Cored-isothermal sphere

$$m_{\nu} \gtrsim \left\{ \frac{9\sqrt{2\pi} M_P^2}{g_{\nu} \sigma_v r_0^2} \right\}^{1/4} = 0.1 \,\text{keV} \,\left\{ \frac{r_0}{1 \,\text{kpc}} \right\}^{-1/2} \left\{ \frac{\sigma_v}{30 \,\text{km/s}} \right\}^{-1/4}$$

\rightarrow Constraints assuming a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: **m** > **1-5** keV (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters!** * **Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems!**

Pauli exclusion principle (no assumption on initial phase space): cannot exceed density of degenerate Fermi gas!

$$E_F = \left(\frac{\hbar^2}{2\,m}\right) \left(3\,\pi^2\,n\right)^{2/3} \longrightarrow v_{F,\nu} \equiv \sqrt{\frac{2\,E_{F,\nu}}{m_{\nu}}} = \left(3\,\pi^2\,\frac{\rho}{m_{\nu}^4}\right)^{1/3} \le v_{\rm esc}$$

$$m_{\nu} > \left\{ 3 \,\pi^2 \, \frac{\rho}{v_{\rm esc}^3} \right\}^{1/4} \approx 0.1 \, \text{keV} \, \left\{ \frac{r_0}{1 \, \text{kpc}} \right\}^{-1/2} \left\{ \frac{\sigma_v}{30 \, \text{km/s}} \right\}^{-1/4}$$

\rightarrow Constraints assuming a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: **m** > **1-5 keV** (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters!**

* Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems!

* **Bosons:** de Broglie wavelength > size of system => $m > 10^{-22} eV$

 \rightarrow see review in e.g. Marsh '15 (axion-like particles)

→ Constraints assuming a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

- => For **DM produced non thermally** in the early universe: **particle statistics matters!**
- * Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems!
- * **Bosons:** de Broglie wavelength > size of system => m > 10⁻²² eV
- \rightarrow see review in e.g. Marsh '15 (axion-like particles)

* Interactions?

- → Electrically neutral (or charge << 1: milli-charged except in secluded dark sector)
- \rightarrow If thermally produced => (weak) couplings to SM particles
- \rightarrow No prejudice on asymmetry dark matter/antimatter
- \rightarrow Self-interactions and/or annihilations allowed
 - => self-interaction cross section bounded

(SIDM)

Combine constraints on small/large scales => velocity-dependent cross section Can be achieved in diverse particle scenarios, even in the WIMP scenario (eg Kahlhoefer+) – review in Tulin & Yu '18

(SIDM)

Talk by James Bullock (canceled)

Critical discussion:

Baryonic effects vs. specific properties of dark matter

Particle dark matter: structuring properties

* Thermal dark matter particles

- ** WIMPs: 10 GeV 1 TeV currently probed. SubGeV and multiTeV in near future.
- => Cusps (pending baryonic effects)
- => Subhalos cutoff mass depends on WIMP properties, typically $\sim 10^{-6} M_{sun}$ for GeV particles.
- => Galactic halos are cuspy and clumpy! (less and less as coldness decreases).

** **SIDM** (keV-TeV)

=> Evaporating subhalos

=> Cores at centers of galaxies (more or less concentrated, depending on baryons).

** Sterile neutrinos DM (~5-50 keV)

- => cutoff mass < dwarf galaxies
- => halos are smooth on mass/spatial scales < dwarf galaxies ($\sim 10^8$ Msun)
- => halos less concentrated than CDM

**** Dark sectors**

=> Get anything you want

* Non-thermal dark matter particles

- ** **DM axion/s** (~ 100 μ eV for the QCD axion DM)
- => depends on Peccei-Quinn symmetry broken before/after inflation
- (i) before: abundance from misalignment mechanism
- => form "axion asteroids" of 10^{-12} M_{sun} (e.g. Kolb & Tkachev '93, Davidson & Schwetz '16).
- => cuspy halos with clumpy clumps! (depending on fraction of axion asteroids)
- (ii) after: $\sim 50\%$ of axions come for string decays => asteroids + smooth DM.
- => cuspy halos with clumps
- **** Ultra-light axion-like/bosonic DM** (down to ~10⁻²²eV)
- => extra-pressure + cores in halos => smooth cored halos with coherence features.

Graininess: Impact on DM searches

Talks by Go Ogiya, Raphael Errani and Martin Stref

Smooth galaxy

Aartin Stref Cumpy galaxy

Subhalos + PBHs: potential probes of the (primordial) power spectrum on unprecedented scales.

Gravitational signatures:

 \rightarrow stellar streams, binaries, lensing, PBH merging rate.

Direct-like searches or effects: e.g. WIMP direct detection, axion haloscopes, capture by stars \rightarrow total dynamically constrained density $\langle \rho \rangle = \rho_{\text{smooth}} + \langle \rho_{\text{subhalos}} \rangle$

=> ρ_{smooth} is smaller in principle (how much?), unless we are crossing subhalos (remember that solar system constraints are $<\rho> < \sim 10^{-20}$ g/cm³ ($\sim 10^4$ GeV/cm³) – e.g. Pitjev+'13

Indirect WIMP searches:

* WIMP annihilation signal prop to $\langle \rho^2 \rangle \Rightarrow$ annihilation boost factor (depends on averaging volume)

$$\mathcal{B}=rac{\langle
ho^2
angle}{\langle
ho
angle^2} \geq 1$$
 (e.g. Silk & Stebbins '93)

DM phase-space distribution in the MW

Talks by James Binney, Giacomo Monari, Thomas Lacroix, Arturo Nunez

Relevant to:
* Direct WIMP searches
* DM capture by stars
* v-dependent processes
(e.g. p-wave annihilation, PBH microlensing)
Simulations:
* f(v) not isothermal
* Provide insights on dynamical correlations
between DM and baryons
Simulations are not the Milky Way!
=> can be used to gain physical insight, not to
predict detection rates in constrained systems.
=> Need other complementary theoretical tools:
Self-consistent phase-space modeling

Important probes on small scales

Armengaud+'17 (Ly-alpha from SDSS DR9)

See also: Ly-alpha: → Irsic+'17 m22>20 Dwarf galaxies: → Calabrese+'16: m22<5 Abundance of HFF ultra-faint lensed galaxies: → Menci+'17: m22>8 Young universe: reionization + first galaxies

A test of the power spectrum on small scales

 \rightarrow Ly-alpha (Talk by Eric Armengaud) \rightarrow 21 cm (Talk by Aurel Schneider)

The very detailed dynamics of the Milky Way

GAIA!!!!

Data release n°2 end Apr. 2018

Review by David Katz

Interpretation: James Binney, Giacomo Monary

Summary

Structure formation: small-scale issues

- \rightarrow inspected through cosmological simulations
- \rightarrow impact of baryons / star formation
- \rightarrow alternative solutions to CDM (?)
- \rightarrow insight on DM features relevant to DM searches

Galactic dynamics:

- \rightarrow Make sense of observations
- \rightarrow Consistency of dynamical relations between baryons and DM
- \rightarrow Constraints of DM (phase-space) distribution

Astro/particle physics:

 \rightarrow combine particle physics properties with astro/cosmo constraints to define/assess potential of DM search strategies

=> Rationale to establish stronger links between communities

Sterile neutrino (W/C)DM

e.g. Dodelson & Widrow '94, Shi & Fuller '99, Asaka, Shaposhnikov, Boyarsky+ '06-16

- \rightarrow Neutrino masses (see-saw)
- \rightarrow Leptogenesis
- \rightarrow DM candidates (more or less warm)
- \rightarrow keV mass range (!= thermal mass)

$$\mathcal{L} \supset \mu \left[\frac{\phi}{v}\right] \bar{\nu}_{l} \nu_{r} + M \nu_{r} \nu_{r} + \text{h.c.}$$

$$\Gamma_{N_{1} \to \gamma \nu} = \frac{9 \alpha G_{F}^{2}}{1024 \pi^{4}} \sin^{2}(2\theta_{1}) M_{1}^{5}$$

Aspects relevant to cosmology:

* suppress power on small scales (free-streaming scale larger than CDM) → viable? (e.g. Schneider 15)

* current limits on thermal masses > 1.7 keV

Detection (main):

- * neutrino experiments (double ß decay)
- * decays to X-ray line: hints @ 3.5 keV (Bulbul+14, Boyarsky+14)
- \rightarrow 7 keV consistent with thermal mass of 2 keV(e.g. Abazajian 14)
- \rightarrow hot debate, could be systematics (cf. Jeltema & Profumo)

Sterile neutrino (W/C)DM

e.g. Dodelson & Widrow '94, Shi & Fuller '99, Asaka, Shaposhnikov, Boyarsky+ '06-16

Axions

(+ axion-like particles + dark/hidden photons = WISPs)

Peccei-Quinn, Wilczek, Weinberg, Kim, Shifman, Vainshtein, Zakharov, Dine, Fishler, Srednicki, Sikivie – 70'-80'

Talk by David Marsh

Essig+12

- (Very) weakly interacting slim particles
- \rightarrow solves the strong CP problem (BSM physics required)
- → CDM candidate (not necessarily all DM!)
- $\rightarrow \mu eV\text{-}meV$ mass range

Aspects relevant to cosmology:

- * non-thermal remnants => expected ultra-cold DM
- \rightarrow minimal mass scale ~ 10⁻¹² Msun subhalos
- \rightarrow detailed structure formation under study

Detection (main):

- * from interactions with photons: conversion
- \rightarrow e.g. ADMX (ongoing): conversion of DM axions into photons

Extra:

* Axion-like particles (ALPs), arising in string-inspired theories => relaxed axion mass range

* Hidden photons: kinetic mixing with photons from broken U(1) in some BSM extensions

Axion searches

TeV blazar gamma-ray conversion to axions e.g. HESS-CTA

"Light shining through a wall" (laser + B-field + wall) e.g. ALPS@DESY Not sensitive to DM

Helioscopes CAST + IAXO @ CERN B-field + micromegas

Sensitive to DM axions (irrespective of local DM density) Haloscopes Microwave cavities / dish antennae B-field + detector (~GHz)

WIMP searches

Astro/particle complementarity

Direct DM searches: recent results

