DIRAC project at IN2P3

<u>L. Arrabito</u>¹, J. Bregeon¹, P. Gay², V. Hamar³, F. Hernandez³, S. Pop⁴, A. Tsaregorodtsev⁵ ¹LUPM-IN2P3/CNRS, Montpellier ²Université de Bordeaux ³CC-IN2P3/CNRS, Lyon ⁴Creatis CNRS, Lyon ⁵CPPM-IN2P3-CNRS, Marseille Journées Informatiques IN2P3/IRFU 2018, 1st-4th October, Portbail

- DIRAC was developed 10-15 years ago by the LHCb collaboration for the workload management on the grid
- Later adopted by several communities
 - ILC, Belle II, T2K, Bes III, Juno, CTA, Fermi, Pierre Auger, biomed, Geant 4, EGI, France Grilles, GridPP
- In continous evolution
 - New use-cases and infrastructures/technology evolutions
- DIRAC@IN2P3 project started in 2017 with the focus on the software generalization to accomodate the requirements of several users communities
 - Federating the effort of French institutes active in DIRAC development and service operation

- Partners
 - CPPM, CC-IN2P3, LUPM, Creatis/CNRS, University of Bordeaux
- Monthly teleconferences and 3 F2F per year
- Project web page
 - https://forge.in2p3.fr/projects/dirac-in2p3/wiki
- Focus on 3 main topics
 - Management of various types of computing resources: HTC, HPC, Cloud
 - 2. Management of complex scientific workflows
 - 3. Management of large datasets for "Big Data" applications

1. Computing Resource Management: HTC, HPC, Cloud

- HTC resources are routinely used by the DIRAC WMS
 - Grid resources
 - Standalone clusters
 - BOINC Volunteer resources
- Main goals
 - Improvements with respect to a flexible usage of multi-core queues and queues with special capabilities
 - Monitoring of the HTC resources availability

- Unlike grid resources HPC centers are not 'uniform'
 - Different access protocols, batch systems, connectivity to outside world
- HPC resources allow a rich description with respect to to traditional grid resources
- Work in progress
 - Develop a more elaborated model of their description with the corresponding payload matching mechanisms
 - Development of the HPC access protocols (SSH, GSISSH, ARC, OAR, SLURM)
 - Methods for remote control of user payloads and data at the HPC centers
 - Site proxy/gateway services
 - User data import and export
- Extensive tests on GPU integration for biomedical applications

- VMDIRAC module allows cloud resources integration
- The goal is 'readiness' for large productions
 - Extensive tests of VMDIRAC functionalities done using CTA workflows (HNSciCloud and LUPM/CC resources)
 - Future work on multi-community scheduler enabling fair sharing and opportunistic usage

2. Data driven Workflow Management

- Workflow management currently based on the DIRAC Transformation System
 - A **Transformation** is an input *data filter* + *a recipe* to create jobs
 - Fully data-driven: jobs are created as soon as data with required properties are registered into the file catalog

- Managing complex workflow needs further automatization
 - Chaining several transformations in a data driven manner
- In 2018: development of a new high-level system ('Production System')
 - Ready to go in the next DIRAC major release

10

3. Dataset Management

- Working on the development of the dataset concept
 - Based on the metadata characterization of user data
 - Dataset operations
 - Dataset validation
 - Dataset integrity verification
- It will enhance the Data driven Workflow Management

Conclusions

- DIRAC@IN2P3 allowed very fruitful exchanges of ideas among partners
 - Accelerated prototyping and development
 - More solid position of France with respect to the DIRAC Consortium
- A lot of progress in 2 project main topics
 - Resource and workflow management
- Future work will focus on the 3rd topic, the "Dataset Management"
- Proceedings and publications in preparation

Backup

Publications

- CHEP'2018, ISGC'2018, Grid'2018 Proceedings
- Publications in preparation
 - DIRAC Transformation System (state of the art of scientific workflows, DIRAC solution)
 - DIRAC Metadata system and datasets

Presentations

- Using virtualized computing resources with the DIRAC Interware, A.Tsaregorodtsev, International Symposium on Grids and Clouds, Taipei, Taiwan, 5-10 March 2017
- DIRAC Distributed Computing Framework, A.Tsaregorodtsev, International Conference Nordugrid, Tromsø, Norway, 27-30 June 2017
- DIRAC services for Grid and Cloud infrastructures, NEC'2017, Budva, Montenegro, 25-29 Sep
- Journées Success, L. Arrabito, Grenoble, October 2017

- Pilot submitted to the batch system through an (GSI)SSH tunnel
- Pilot communicates with the DIRAC service through the Gateway proxy service
- Output upload to the target SE through the SE proxy

- Multi-core job scheduling
- Pilots with partitionable internal slots
 - M-core Pilots pull N-core jobs (N<=M) until internal slots used up
 - Pilot is standard-size, can be whole-node, 4-node, 8-node....
 - Optimizing CPU efficiency

