ARS Calibration - latest news

- Latest Calibration
-DNL correction
-ARS DAC tunning tests
HV change?

Reminder

New 1 pe Calibration Set

Soft v3r4

- installed at La Seyne
- with possibility of including DNL correction*
-Run 38470-13/01/2008 1pe and XT correction only**
- In the DataBase versionid 17275311:
- Previous from 04/11/2008

TS=0 check to monitor the thresholds

[^0]
1pe

Big dispersion. We want to get a more uniform picture.

Dynamic range

Originally 1 pe-0pe $=10 \quad$ Change due to gain drop
Goal : get back to original situation (Adapt HV or electronics setting) get a more homogeneous response

Check threshold with TS=0 events

Run 38460: setup "Line 1-12 TS=0 trigger threshold (noise corr.) SCAN"

Gain drop

0.53 Ch. in 2.5 months

Gain drop examples

inhomogenous

Gain drop v.s. line

Nota: error bars are not statistical but the mean σ of the fitted 1 pe distributions
Mean: - $0.23 C h . / M t h \times 2.5$ months

DNL correction

Correction=Reweighting see:

Antoine presentation in Rome or http://apc.univ-paris7.fr/MediaWiki/Utilisateur=ANTARES

No correction

DNL correction

Correction=Reweighting see:

Antoine presentation in Rome
or http://apc.univ-paris7.fr/MediaWiki/Utilisateur=ANTARES

No correction
Corr1 $=$ Correction + no DC fit NO

DAC tunning

Why?:
Get a uniform detector
Ope=30 \& 1pe-Ope=10
-Play with Tranfer Function of ARS

M/コc not unfrkinc ac aynortod

Reminder definition TF

ADC transfer functions (Elec-2005-005) for base (AD1_B2B) and slope (AD1_B2L)

$\mathrm{V}_{255} \equiv$ lowest V for which $\mathrm{AVC}=255 \quad \mathrm{~V}_{0} \equiv$ First $\mathrm{V} \neq 0$ signal $\mathrm{AVC}=0$ pe

$$
V_{\text {bin }}=\text { Base - LSB (255-bin) }
$$

Base $=\alpha_{b} \underbrace{}_{-133.7 \mathrm{mV} / \mathrm{bit} \quad 4849 \mathrm{mV}}$
LSB $=\alpha_{1} \times$ AD1_B2L $+\beta_{1}$
$0.486 \mathrm{mV} / \mathrm{bit}$
1.45 mV

Todav: AD1 B2L=11 \& AD1 B2B=17

Reminder definition TFTests with LB (base=cst)

ADC transfer functions (Elec-2005-005) for base (AD1_B2B) and slope (AD1_B2L)

$\mathrm{V}_{255} \equiv$ lowest V for which $\mathrm{AVC}=255 \quad \mathrm{~V}_{0} \equiv$ First $\mathrm{V} \neq 0$ signal $\mathrm{AVC}=0$ pe

Todav: AD1 B2L=11 \& AD1 B2B=17

Tunnings for 1 pe $=40$ and 0 pe $=30$

1) ad1_b2l (LSB) so that 1 pe-0pe=10
2) ad1_b2b (base) so that $0 p e=30$

1pe exp vs 1pe new

Tunnings for 1 pe $=40$ and 0 pe $=30$

1) ad1b2l (LSB) so that 1 pe-0pe=10
2) ad1b2b (base) so that $0 p e=30$ (base known)

1pe exp vs 1pe new

1 pe v.s. DAC setting (Isb)

1pe v.s. DAC setting (Isb))

ad1_b2|<7=>6 \& ad1_b2|>14 =>15

Tunnings for 1 pe=40 and 0 pe=30

Before

ad1_b2|<7=>6 \& ad1_b2|>14 =>15

1pe exp vs 1pe new

Tunnings for 1 pe=40 and 0 pe=30

After
ad1_b2l<7=>6 \& ad1_b2l>14 =>15

1pe exp vs 1pe new

DAC: Summary/Conclusion

1pe-Ope new vs 1pe-0peCurr

DAC: Summary/Conclusion

1pe-Ope new vs 1pe-0peCurr

DAC: Summary/Conclusion

1pe-Ope new vs 1pe-0peCurr

HV Tunning Study

J.-P. Schuller CEA-Saclay

Alternative/Complementary approach to homogenize the detector: Play with PMT HV => Change Gain => Move 1PE-0PE

New attempt to render more uniform the channels response

What is different with respect to November 2008 ?

* New set of pedestals centred around 30
* Target value for 1 pe: 8 ADC channels (instead of 10)

* Average value ~ stable * rms divided by ~ 2
\leadsto (was already near 8 !! $)$

Less entries in $2^{\text {nd }}$ plot: loss of L10 in the interval...

Corrected slopes after $2^{\text {nd }}$ iteration

Target value: 8
$\rightarrow 8 \pm 1$ is OK

Reminder:
Due to DNL, uncertainty on slope is ± 2

Corrected slopes after $2^{\text {nd }}$ iteration

Target value: 8
 $\rightarrow 8 \pm 1$ is OK

Reminder:
Due to DNL, uncertainty on slope is ± 2

Corrected slopes after $2^{\text {nd }}$ iteration

Corrected slopes after $2^{\text {nd }}$ iteration

Corrected slopes after $2^{\text {nd }}$ iteration

Improved!
But not enough...

A $3^{\text {rd }}$ iteration can be useful.
> Better to perform it after a re-tuning of TRIGO_TH
> Ideally after we found a way to get rid of the DNL!

Applied corrections to HV's

For these channels, the operation can not be repeated every year...

The HV is limited to 2400 V ! In average: + 18 V

Applied corrections to HV's

For these channels, the operation can not be repeated every year...

The HV is limited to 2400 V !

In average: + 18 V

Interesting to group lines by family according to their connection date ...

Applied corrections to HV's

For these channels, the operation can not be repeated every year...

The HV is limited to 2400 V ! In average: + 18 V

Interesting to group lines by family according to their connection date ...

Applied corrections to HV's

For these channels, the operation can not be repeated every year...

The HV is limited to 2400 V !
In average: + 18 V
Interesting to group lines by family according to their connection date ...

Better to wait for final tuning before concluding

 [

Future action

1) Infer new trig0_th value to follow HV setting
2) Re-calilbration p.e. peak
3) Fine adjustment of trig0_th (TS=0 + rate)
=> RECOMPUTE EVERY CALIBRATION CONSTANTS
Time (t0 + tvc), charge, thresholds
We have started to implement 1)....
We will report on this at the first ANR report.

[^0]: * Reweighting method
 **No Ope because «breaks » everything

