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Telescope

@ | SST will produce the deepest,
widest, image of the Universe :
@ 37 billion stars and galaxies
® 10 year survey of the sky
® 15 Terabytes of data ...every
night !

@ LSST will discovery hundreds of
thousands of type la supernovae

@ Be able to automatically identify
Sne la among all the supernovae
with only the photometric
information
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Fig 8.12 (S. Charlot) ‘Galaxies in the Universe' Sparke/Gallagher CUP 2007
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Image from SDSS DR9 Strong gravitational lensing around
qalaxy cluster CLO024+17
Credit: NASAIESAIM.J. Jee (John Hopkins,
University)

Results of a digital simulation showing the large-scale
distribution of matter, with filaments and knots.
Credit: V.Springel, Max-Planck Insiut fr Asirophysik, Garching bei
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Why use Deep Learning methods?

Context of LSST

spectroscopic follow up
limited — deal with a
huge quantity of
photometric data

Deep Learning
= Very efficient
with large
quantities of data
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Why use Deep Learning methods?

Context of LSST

= spectroscopic follow up
limited — deal with a
huge quantity of
photometric data

= Large amount of images

Deep Learning
= Very efficient
with large
quantities of data
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Why use Deep Learning methods?

= Context of LSST

= spectroscopic follow up
limited — deal with a
huge quantity of
photometric data

= Large amount of images

= Deep Learning

Very efficient
with large
quantities of data

CNN won a lot of
competitions for
the classification
of images
(ImageNet)
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Why use Deep Learning methods?

Context of LSST

= spectroscopic follow up
limited — deal with a
huge quantity of
photometric data

= Large amount of images

= Feature extractions
introduce information
loss and is
computationally
expensive

Deep Learning
= Very efficient
with large
quantities of data

= CNN won a lot of
competitions for
the classification
of images
(ImageNet)
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Why use Deep Learning methods?

Context of LSST

= spectroscopic follow up
limited — deal with a
huge quantity of
photometric data

= Large amount of images

= Feature extractions
introduce information
loss and is
computationally
expensive

= Deep Learning

Very efficient
with large
quantities of data

CNN won a lot of
competitions for
the classification
of images
(ImageNet)

Deep Learning
methods do not
involve a feature
extraction step
and can be fast
to produce
inferences
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History

1957 Perceptron (Rosenblatt)

1986 MLP (Rumelhart et al.)

1998 LeNet (LeCun et al.)

2012 A CNN won ImageNet (Alexnet, Krizhevsky et al.)

Inputs Weights

( N\
% " /\ \ Activation

= N\ Sum function
n — g8 \ yam \ z a
@
a=0(3 xw+b)
1

]
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The main property of deep

Classical methods

Input data

Deep learning

Input data

Feature crafting

Feature learning

learning

Separation with a
classifier

The best feature

__» Space representation is

found by the network
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The convolutional neural network

in astronomy
Kaggle challenge with the goal to build an algorithm to classify
the different morphologies of galaxies from JPEG images : a
CNN won the challenge (Dieleman et al. 2015)
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LeNetb

C3: 1. maps 16@10x10

INPUT % zfgaége maps S4: {. maps 16@5x5
32x32

S2 f. maps
6@14x14

|
Fulloonrlectinn | Gaussian connections
Convolutions  Subsampling Full connection

c

Lecun et al. 1998

3 operations:
= Convolution + non linearity (feature extraction)
= Pooling
= Fully Connected (classification)
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Convolutions
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Every image is a matrix of pixel values.
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Convolutions

An image Akernel A cpnvolved
image
1/1(1,0(0
oj1(1|1/0 1711 4 3|4
0O/0|1|11 11 2143
ojo0j1|1/|0 0[0]|1 2|13|4
0O(1/1|0/|0

Then introduce non-linearity (tanh, ReLu...)
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convolution layer

g9
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A feature map

w(N| O o

RPlRiRP

PR, N®

N|h|N|O

64x64

Pooling operation

Max in a 2x2
sliding window
with a stride of 2

Max in a 2x2
sliding window
with a stride of 2

Pooling

A subsampled feature
map

32x32
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Fully connected

Input

lllll
111§

SN

h
/u \\,\
//)i &N

N,

Hidden Layer-1 Hidden Layer-2  Hidden Layer-3

DA
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© Photoz
Context
The emergence of Deep Learning

Outline
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Template fitting:

= template fitting

I
match the
photometry of a
galaxy to a suite of
templates across a
large redshift interval.

4
computationally
intensive,
degeneracies in colour
— redshift space can
occur

magnitude

magnitude

Existing methods

ID:_797__ zspec=1.017 , zphot=1.018

Type 1 B o, Noand Model ¢
GAL11018 4 050 ® 2 ]

Aum

ID: 16150, zspec=:99.000 , zphot=2.351

Type 7 Fiw EuyNoand Model ¢
GAL123S1 4 015 m & 213
GAL211% 1 010 ® 9 B2

i+
"_“ﬁ' L4

Y =

from Hsu et al. (2014)
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machine learning

\

Use a training
database and a set
of predefined
features (KNN,
RF...)

!
limited by the
training set and the
features chosen

Existing methods

06 |

04}

0.0

0.0

0.4 06 0.8
Zpee From Beck et
al. 2016
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Our Deep Learning approach

A collaborative work (will be submitted soon):

Johanna Pasquet(CPPM), Emmanuel Bertin (IAP), Marie
Treyer (LAM), Stephane Arnouts (LAM) and Dominique
Fouchez (CPPM)

What we want to improve :

1. Have a well representative and a complete training database
with r-band magnitude < 17.8

2. Deliver not only single photoz values but also PDFs

3. Make photo-z estimates immune to |Q variations and
contamination by neighbours

4. Optimize our own architecture and not use an existing model
5. Obtain the best performance compared to existing methods!
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Main Galaxy Sample SDSS

REDSHIFT
0.05 015 025
. — . :
157 3 X - .
s = 0
. "
v 1 B
-
Stripe 82

0.00 0.01 A i 004 0.05 0.06 0,07 0, 0.09 010
- EBV. E el
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[ Convoluson
-

L —
[ =y comnecrest

v
/Input images of size 64x64

Our architecture

/ Output probabilities \

Vector composed of
the probabilities of
the photometric
redshift to be inside -
each z-bin

b Obtain the z-PDFs z
Best prediction of z-phot is the
value of the centroid
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An Inception block

Image
64x64x5

Dimensionality reduction of
feature maps

Search of patterns at multi-
scale resolutions
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Performance of the method

Number of
galaxies
CNN r B16 )
0.25 025 N
2
' ‘3 ¢
o2 . ¢ o2
y 1
£ s » g s ; '
N - N 2
. ¢ L
1 ‘ )
010 4 / 10 010 -4 - 100
. v ey
. :
"
005 005
i

o P o

o w
S0 ok ol o 0w o aw o o ol ol om0 ow

Z spec

(Az)=1.0x10""*
0=9.1x10"?
n=0.31%

A2=( 2o Zopee ) (142 )
0=1.4826 X MAD

MAD = Median (|A z— Median(A z)|)

n=|Az|>0.05

z spec

«4—6 factor improvement <A z>=6>< 10_4

0=1.3%x10""?
n=1.35%

4 30 % improvement

4— 4 factor improvement
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The PIT statistic (Dawid 1984) is based on the histogram of the
SR cumulative probabilities at the true value. For galaxy i with
Geenlewnn.  Spectroscopic redshift z in the test sample :
Pho;oz PIT/:/ PDF,(Z)dZ
Context —o0

The emergence of
Deep Learning

Last results on
Photoz

The data
DL network

Our results

Summary

Relative frequency

PIT

24
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MEAN PDF

PDF distributions

0.06 T

— full sample
— Stripe 82
suspect zone ||

0.05F

004t

0.03}

0.01}p

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
Z-ZSPEC



Photoz

Johanna Pas-
quet

General
Introduction

Deep Learning
ANNs
CNNs

Photoz
Context
The emergence of

Deep Learning

Last results on
Photoz

The data

DL network

Our results

Summary

27

Integrate the reddening into the
training

#—« CNN w/o EBV

Az

416000

14000

12000

10000

8000

6000

4000

2000




The disk inclination

0.015

e—s CNN

—0.005
01 0.2

03 04 05 06 07 08 09
Disk inclination (bfa)

DA
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Summary results

CNN
Trial training bias o outliers % CRPS
sample size
Training using Full test sample 393,219 0.00010 0.00912 0.31 (1.34) 0.00674
80% of the (B16) (0.00064) (0.01350)
dataset Widest 20% of PDFs removed 393,219 0.00011 0.00792 0.06 0.00557
Testing on Stripe 82 393,219 -0.00009 0.00727 0.34 0.00574
Testing on Stripe 82, widest 393,219 0.00005 0.00669 0.10 0.00502
20% of PDFs removed
Training using 20% of the 99,001 0.00005 0.00917 0.30 0.00679
dataset
Training using 2% of the 10,100 -0.00001 0.01440 1.29 0.01013
dataset
Training w/o Stripe 82, 486,560 -0.00077 0.00760 0.41 0.00606
testing on Stripe 82
Training and testing on Stripe 15,771 -0.00002 0.00795 0.38 0.00622
82
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Deep Learning methods have emerged in Astronomy for
classification tasks from images and light-curves

In the context of large surveys like LSST we need to
develop this kind of tool to deal with the huge quantity of
data

Our work shows significant improvements for:

= the prediction of photometric redshifts

= the zPDFs that are well calibrated

= no measurable bias with the reddening and the inclination
of galaxies
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Thank you!
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