SNEMO: Type Ia Supernova Modeling with Data from the Nearby Supernova Factory

Clare Saunders, LPNHE

LSST-France webinaire, March 27, 2018

Constraining cosmological parameters

Betoule+ 2014

Hubble constant discrepancies

How are Type Ia Supernovae used for cosmology?

- Type la supernovae are standardizable candles
- By taking several observations of a supernova over the course of its lightcurve in multiple bands, measured supernova properties can be used to 'correct' the supernova's magnitude.

What determines precision?

Hubble diagram will be filled in by DES,PanSTARRS, LSST, SeeChange, etc.➡Statistical errors will be greatly reduced.

Scatter is combination of calibration uncertainty, 'intrinsic dispersion' in supernova magnitudes, and other causes

- Current surveys working to reduce calibration uncertainty.
- Better models needed to reduce the 'intrinsic dispersion'.

Current Standards

SALT2 model = flux(phase, λ) =

- SALT2, MLCS2k2 (not based on spectral time series templates)
- Simple, only a few degrees of freedom, trained mostly on photometry.

```
X_{0} \times \left( \int_{\frac{1}{2^{n}}} \int
```

Current Supernova Standardization

• Fit parameters to minimize the quantity

$$\Delta \mu = m_B - M + \alpha x_1 - \beta c$$

A new model for Type Ia supernovae

- Why is this necessary?
 - Decrease uncertainty in the Hubble diagram.
 - Dispersion is a sign of unmodeled processes
 - leads to bias if population changes as a function of redshift
- With the Nearby Supernova Factory, we have the data to make a better model.

The Nearby Supernova Factory

1111.1

- Spectrophotometric data
- Observations of > 1100 supernovae
- Full light curves for almost 400 SNIa
- Redshifts < 0.1

Plan for Making a New Supernova Model

- Use data from SNfactory
- Do something like SALT2 -- linear spectral time series templates
- Add complexity to capture more of SNIa diversity
- Result: SNEMO = SuperNova Empirical MOdel

Making the Model

- Use Gaussian Processes to model each individual SN
- (Optional) Deredden with a color relation
- Use EMFA (PCA-like process) to calculate model components
- Use K-fold cross-validation to determine model parameters:
 - What color relation to use
 - Model training set selection
 - Number of components in the final model

Gaussian Processes

· Idea--supernova data is some true function plus a gaussian error

$$y = f(x) + \mathcal{N}(0, \sigma_n^2)$$

• Data points have some correlation

$$\mathbf{f}_{\star} \sim \mathcal{N}(m(X_{\star}), K(X_{\star}, X_{\star}))$$

• Given these assumptions, one can predict the true supernova flux

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m(X) \\ m(X_{\star}) \end{bmatrix}, \begin{bmatrix} K(X, X) + V & K(X, X_{\star}) \\ K(X_{\star}, X) & K(X_{\star}, X_{\star}) \end{bmatrix}\right)$$

• The matrix K is made up of Matérn kernel elements:

$$k(x,x') = \sigma_f^2 \left[1 + \frac{\sqrt{5}(x-x')}{l} + \frac{5(x-x')^2}{3l^2} \right] \exp\left(-\frac{\sqrt{5}(x-x')}{l}\right)$$

Gaussian Processes

29.11 $\lambda = 8010$ 24.39 $\lambda = 7010$ 19.67 17.87 $\lambda = 6100$ 17.85 Flux + offset Flux + offset 14.97 $\lambda = 5010$ 10.22 8.36 $\lambda = 4000$ 5.48 3.54 $\lambda = 3350$ 0.79 0.77 🛉 🛉 Data 3,93 Prediction -10 20 30 40 4000 7000 10 50 3000 5000 6000 8000 9000 0 Phase Wavelength (Å)

SNF20060621-015

Dereddening

• Minimize the quantity

$$\sum_{SNe} \sum_{p,\lambda} \frac{(f_{SN_i}(p,\lambda) - a \ 10^{-0.4} \ E(B-V) \ c(\lambda)}{\sigma_{SN_i}^2} \frac{f_{fid}(p,\lambda))^2}{\sigma_{SN_i}^2}$$

as a function of a, E(B-V) and f_{fid}

Expectation Maximization Factor Analysis (EMFA)

- A way to calculate orthogonal eigenvectors (Ghahramani and Hinton, 1996)
- Uses the noise in the data
- More robust than similar methods, such as EMPCA
- Only calculates first N components

Eigenvectors output by EMFA

Eigenvectors Reconstructed into Spectral Time Series

Choosing the number of model components

- Multiple Goals:
 - SNEMO2: Comparing the model to SALT2
 - SNEMO7: Finding the number of components with which we can minimized dispersion in the standardized magnitudes, following the SALT2 method
 - SNEMO15: Finding the model that best captures Type Ia supernovae diversity.

Out of sample SN reconstruction

Standard deviation of out-of-sample SNe pulls

SALT2 comparison

Distinguishing Peculiar Type Ia Supernovae

(using SNEMO7)

How good is this model?

A counter example: twin supernovae (see Fakhouri et al. 2015)

Comparison with 'twin' supernovae

What about the dispersion?

Dispersion in standardized magnitudes

Total dispersion = 0.113 mags Intrinsic Dispersion = 0.097 mags

What about fitting photometry?

- Can these models be constrained by photometric data?
- This can be tested with a simulation:
 - Use the models to simulate photometric data
 - Fit the models to the simulated data
 - Compare the fit coefficients with the original components

What about fitting photometry?

Scenario 1: Flux-Calibrated Spectra

Scenario 2: Photometry

Data:

Summary

- New model developed that captures much more of supernova diversity
 - Two models produced with different levels of complexity, plus simple model for comparison with SALT2/MLCS2k2
 - Usable with photometry
 - SNEMO7 will lead to lower dispersion in corrected magnitudes -- better constraints on cosmology
 - SNEMO15 also usable for more accurate simulations of SNIa populations