

Charmless b-hadron decays at LHCb

L. Henry Strasbourg, 07/03/2018

Outline

Introduction

The LHCb detector

6.0E+34

Peak lu

Integrated

3

Introduction

Standard Model and beauty physics

Limits of the Standard Model

The CKM matrix and KM mechanism

• Weak interaction quark eigenstates $q_{u,d} \neq$ flavour eigenstates $Q_{u,d}$

The unitarity triangle

Physics case of charmless hadronic *b*-decays

• Charmless *b*-hadron decays proceed through various processes.

- BSM particles can contribute inside of loops or instead of W⁺.
- (n>2)-body decays allow access to phases between quasi two-body decays (Q2B) using amplitude analyses.
- No trigonometric ambiguity!

Charmless decays at LHCb

- Many channels not yet observed
 - Suppressed decays (BR < 10⁻⁴)
 - Includes decays of B_s , Λ_b , *b*-baryons etc. \rightarrow not (easily) accessible by *B* factories.
- Hadronic final states (except for $\pi^0 \rightarrow \gamma \gamma$).
- For most channels, CPV accessible only through time-dependent, flavour-tagged analyses.

- For most decays, program in two steps:
 - 1. Observe modes for the first time and extract branching fractions.

2. Perform angular, Dalitz-plot analyses to access physics observables , e.g. **phases**, **CPV observables**.

The LHCb detector at LHC

The LHCb detector

The LHCb detector

Single-arm forward spectrometer [JINST 3(2008) S08005.]

The LHCb detector: sketch

[JINST 3(2008) S08005.]

13

The LHCb detector: tracking subsystems

The LHCb detector: tracking subsystems

15

The LHCb detector: particle identification

The LHCb detector: particle identification

LHCb performance paper arXiv:1412.6352

• Fully hadronic final states (except for $\pi^0 \rightarrow \gamma \gamma$).

- Cherenkov detectors (RICH);
- shower development;
- calorimetry.

104

k

Cherenkov Angle (rads)

0.03

0.03

0.025

0.02

0.01

π

220

120

20

10⁵

Momentum (MeV/c)

The LHCb detector: flavour tagging

- LHC is a hadronic machine \rightarrow no precise knowledge of the initial state (energy, flavour).
- Tagging: determination of the flavour at production of the meson.

Combined tagging power: 3-8%

Physics analyses

Charmless decays: legacy from B factories

- B-factories have narrowed down the apex of the UT quite impressively.
- Several key modes: $B^0 \rightarrow \eta' K^0$, $B^0 \rightarrow \phi K^0$...
- In these mode, flavour-tagged, time-dependent analyses performed → large number of CPV observables measured and used to constrain the SM.

Charmless b-decays: LHCb contribution

- Charmless analyses only on Run 1 (3fb-1) for the moment.
- Already some outstanding results, for instance:
 - First evidence for CPV in $\Lambda_b \rightarrow p\pi^+\pi^-\pi^+$.
 - Nature Physics 13, 391-396 (2017)
 - First observation of baryonic B_s decay: $B_s \rightarrow p\overline{\Lambda}\pi$.
 - Phys. Rev. Lett. 119, 041802 (2017)
 - First measurement of ϕ_s in $B_s \rightarrow \phi \phi$.
 - Phys. Rev. D 90, 052011 (2014)
- ... and the results we are going to discuss just next.
- Common pattern: most results are direct CPV and/or new observations.

Measurement of $\phi_s^{d\overline{d}}$ in $B_s \rightarrow (K^+\pi^-)(K^-\pi^+)$

- Decay first observed in 2011 by LHCb [PLB 709 (2012) 50], updated in 2012 [JHEP 07 (2015) 166]
- Decay dominated by a gluonic penguin diagram
 - Complementary to measurements in EW penguins.
- Powerful check of the SM.

• $\Phi_s c\bar{c} = -0.021 \pm 0.031$ rad, measured in for instance $B_s \rightarrow J/\Psi K^+K^-$

 $\Gamma \propto \sum e^{-\Gamma_s t} \left[a_{ij} \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_{ij} \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_{ij} \cos\left(\Delta m_s t\right) + d_{ij} \sin\left(\Delta m_s t\right) \right]$

Time-dependent amplitude analysis

		Decay	Mode	j_1	j_2	Allowed values of h	Number of amplitudes	
or		$B_s^0 \to (K^+\pi^-)_0^* (K^-\pi^+)_0^*$	scalar-scalar	0	0	0	1	
ns		$B_s^0 \to (K^+\pi^-)_0^* \overline{K}^* (892)^0$	scalar-vector	0	1	0	1	
te	ts	$B_s^0 \to K^*(892)^0 (K^- \pi^+)_0^*$	vector-scalar	1	0	0	1	
or	en –	$B_s^0 \to (K^+\pi^-)_0^* \overline{K}_2^* (1430)^0$	scalar-tensor	0	2	0	1	→ 19 amplitudes
لت (۵	uo –	 $B_s^0 \to K_2^* (1430)^0 (K^- \pi^+)_0^*$	tensor-scalar	2	0	0	1	10 amplitudes
Ш	ďu	$B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0$	vector-vector	1	1	$0, \parallel, \perp$	3	
ti	on	$B_s^0 \to K^*(892)^0 \overline{K}_2^*(1430)^0$	vector-tensor	1	2	$0, \parallel, \perp$	3	
rst	ပ 	$B_s^0 \to K_2^* (1430)^0 \overline{K}^* (892)^0$	tensor-vector	2	1	$0, \parallel, \perp$	3	
Ε	-	$B_s^0 \to K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	tensor-tensor	2	2	$0,\ _1,\perp_1,\ _2,\perp_2$	5	arXiv:1712.08683

Measurement of $\phi_s^{d\bar{d}}$ in $B_s \rightarrow (K^+\pi^-)(K^-\pi^+)$

• First things first: yield extraction

Measurement of $\phi_s^{d\bar{d}}$ in $B_s \rightarrow (K^+\pi^-)(K^-\pi^+)$

• Amplitudes depend on masses and angles.

• Tagging power ~ 5%.

Tagging algorithm	$\epsilon_{ m tag}$ [%]	$\epsilon_{ m eff}$ [%]
SS	62.0 ± 0.7	1.63 ± 0.21
OS	37.1 ± 0.7	3.70 ± 0.21
Combination	75.6 ± 0.6	5.15 ± 0.14

 $\Phi_s^{d\bar{d}} = -0.10 \pm 0.13 \text{ (stat.) } \pm 0.14 \text{ (syst.)}$ Consistent with SM prediction and $B_s \rightarrow \phi \phi$

arXiv:1712.08683

Update of $B_{d,s} \rightarrow K_{s}h^{+}h^{-}$ branching fractions

- 25
- $B_{d,s} \rightarrow K_s h^+h^-$, with h, h' = $\pi, K \rightarrow 8$ decays. K_s reconstructed as $\pi^+\pi^-$.

$B_d \rightarrow K_S \pi^+ \pi^-$	$B_d \rightarrow K_S K^+ \pi^-$	$B_d \rightarrow K_S K^- \pi^+$	$B_d \rightarrow K_S K + K^-$	Green: observed; Red: not observed; favoured decay (see below)
$B_s \rightarrow K_s \pi^+ \pi^-$	$B_s \rightarrow K_s K^+ \pi^-$	Bs→K _s K ⁻ π ⁺	$B_s \rightarrow K_S K^+ K^-$	uccay (see below).

- Observed $B_s \rightarrow K_s \pi^+ \pi^-$.
- Confirmed $B_d \rightarrow K_S K^{\pm} \pi^{\pm}$.
- Observed $B_s \rightarrow K_s K^{\pm} \pi^{\pm}$.

- Goals of the LHCb analysis using 3fb⁻¹:
 - update measurement of branching fractions;
 - search for $B_s \rightarrow K_s K^+ K^-$;
 - prepare Dalitz-plot analyses of all modes.
- Dataset divided into:
 - 4 final states;
 - 2 K_s reconstruction categories;
 - 3 data-taking periods.
 - \rightarrow 24 invariant-mass distributions

- Shapes taken from Monte-Carlo, except for combinatorial background.
- B_d and B_s masses and widths fit in data.
- Fast Monte-Carlo developed for partially reconstructed backgrounds modeling.
- Gaussian constraints on misidentified signals and partially recontructed backgrounds yields.
 J. High Energ. Phys. (2017) 2017: 27

Update of $B_{ds} \rightarrow K_{s}h^{+}h^{-}$ branching fractions: Results

 $\frac{\mathcal{B}(\mathbf{B})}{\mathcal{B}(\mathbf{B})}$

 $rac{\mathcal{B}(1)}{\mathcal{B}(1)}$

$B_s \rightarrow K_s K^+ K^-$: 2.5 σ significance.

[LHCB-PAPER-2017-010]

$$\mathcal{B}(B^{0}_{d,s} \to K^{0}_{s}h^{+}h^{'-}) = \frac{N^{\text{corr}}_{B^{0}_{d,s} \to K^{0}_{s}h^{+}h^{'-}}}{\mathcal{L}.\sigma_{pp \to b\overline{b}}.f_{d,s}}$$
$$\frac{\mathcal{B}(B^{0}_{d,s} \to K^{0}_{s}h^{+}h^{'-})}{\mathcal{B}(B^{0} \to K^{0}_{s}\pi^{+}\pi^{-})} = \frac{f_{d,s}}{f_{d}} \frac{N^{\text{corr}}_{B^{0}_{d,s} \to K^{0}_{s}h^{+}h^{'-}}}{N^{\text{corr}}_{B^{0} \to K^{0}_{s}\pi^{+}\pi^{-}}}.$$

$$\begin{aligned} \frac{\mathcal{B}(B^0 \to K_{\rm s}^0 K^{\pm} \pi^{\mp})}{\mathcal{B}(B^0 \to K_{\rm s}^0 \pi^+ \pi^-)} &= 0.123 \pm 0.009 \text{ (stat.) } \pm 0.015 \text{ (syst.) }, \\ \frac{\mathcal{B}(B^0 \to K_{\rm s}^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_{\rm s}^0 \pi^+ \pi^-)} &= 0.549 \pm 0.018 \text{ (stat.) } \pm 0.033 \text{ (syst.) }, \\ \frac{\mathcal{B}(B_s^0 \to K_{\rm s}^0 \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K_{\rm s}^0 \pi^+ \pi^-)} &= 0.191 \pm 0.027 \text{ (stat.) } \pm 0.031 \text{ (syst.) } \pm 0.011 \text{ } (f_s/f_d) , \\ \frac{\mathcal{B}(B_s^0 \to K_{\rm s}^0 K^\pm \pi^\mp)}{\mathcal{B}(B^0 \to K_{\rm s}^0 \pi^+ \pi^-)} &= 1.70 \pm 0.07 \text{ (stat.) } \pm 0.11 \text{ (syst.) } \pm 0.10 \text{ } (f_s/f_d) , \\ \frac{\mathcal{B}(B_s^0 \to K_{\rm s}^0 K^\pm K^-)}{\mathcal{B}(B^0 \to K_{\rm s}^0 \pi^+ \pi^-)} &= 0.026 \pm 0.011 \text{ (stat.) } \pm 0.007 \text{ (syst.) } \pm 0.002 \text{ } (f_s/f_d) , \end{aligned}$$

Compatible with previous measurements Dalitz-plot analyses underway.

$$\frac{\mathcal{B}(B_s^0 \to K_s^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_s^0 \pi^+ \pi^-)} \in [0.008 - 0.051] \text{ at } 90\% \text{ C.L.}$$

Amplitude analysis of $B^0 \rightarrow K_s \pi^+\pi^-$: results

- Only a time-dependent, flavour-tagged analysis would provide complete information.
- Direct CPV on flavour-specific resonance available.

 $\times 10^{\circ}$

30

Prospects from Run II and further

Prospects: near and far future of LHCb

- All presented results use only data from Run I of the LHC \rightarrow 3fb⁻¹ at centre-of-mass energy of 7 and 8 TeV.
- Run 2 aims at adding 5 fb⁻¹ at 13 TeV
 → more than four times as much
 data as in Run I.
- Most current charmless analyses are dominated by statistical uncertainties.

30

Prospects: near and far future of LHCb

- All presented results use only data from Run I of the LHC \rightarrow 3fb⁻¹ at centre-of-mass energy of 7 and 8 TeV.
- Run 2 aims at adding 5 fb⁻¹ at 13 TeV
 → more than four times as much
 data as in Run I.
- Most current charmless analyses are dominated by statistical uncertainties.
- Upgrade planned after 2018, including:
 - massive overhaul of the trigger system;
 - complete change of all the tracking subsystem.
- Expected LHC luminosity delivery.
 [2016 J. Phys.: Conf. Ser.706 022002]
- What can be done with that amount of data?

the LHC will deliver about 300 fb⁻¹ in its first 10-12 years of life.

Prospects: three-body charmless decays

- New channels observed \rightarrow physics programme of charmless decays is expanding.
- Wealth of different channels:
 - Initial hadron: baryon, B⁰, B_s, B_c⁺
 - Final state: baryonic, V0 particle...
- Work on amplitude analyses already ongoing.
 - Allows to measure many more Q2B branching fractions.
 - Allows to access more physics observables.
- In some cases $(B^+ \rightarrow 3h)$, data already there (>100k events) but need for refined analysis techniques.

Expected "phase transition" in charmless analyses at LHCb from first observations to fully fledged amplitude analyses.

32

Prospects: near and far future of LHCb

- All presented results use only data from Run I of the LHC \rightarrow 3fb⁻¹ at centre-of-mass energy of 7 and 8 TeV.
- Run 2 aims at adding 5 fb⁻¹ at 13 TeV \rightarrow more than four times as much data as in Run I.
- Most current charmless analyses are dominated by statistical uncertainties.
- Upgrade planned after 2018, including:
 - massive overhaul of the trigger system;
 - complete change of all the tracking subsystem.
- Expected LHC luminosity delivery. [2016 J. Phys.: Conf. Ser.706 022002]
- What can be done with that amount of data?

Prospects: a case for new techniques

- Direct CP asymmetries in $B^+ \rightarrow h^+h^-h^+$ (favoured) [PRD 90, 112004 (2014)].
- Large efficiencies, "large" $BF \rightarrow >100k$ events. "Glimpse" into the future.

Prospects: a case for new techniques

- Most Dalitz-plot amplitudes use isobar model:
- Shortcomings:
 - B-meson decays have a large phase space \rightarrow nonresonant component not easy to model.
 - Localised, large, direct CP violation can be due to $(\pi\pi\leftrightarrow KK)$ rescattering.
 - There are hints of three-body final-state interactions. Cannot fit into that model.
- Several approaches attempted:
 - adapting the isobar model [arXiv:1506.08332];
 - K-matrix approach;
 - Quasi-model independent (bin the phase space and determine mag/phase in each bin).

Increased datasets will both allow us and force us to develop new and more refined amplitude analysis techniques.

Prospects: Belle 2

- Pros:
 - you know what you order \rightarrow known energy, better flavour-tagging (37% power).
 - larger efficiency on electrons, K_s mesons, K_L mesons, γ , π^0 .
- Cons:
 - you know exactly what you order \rightarrow fewer initial states (fewer B_s, B_c, *b*-baryons).
 - smaller data samples on fully charged modes.
- Personal summary: Belle has more final states, LHCb has more initial states.
- And charmless? Charmless is most powerful when all related channels are studied together
 → possible Belle 2 advantage here.
 - e.g. arXiv:1306.5574 (γ extraction using B \rightarrow KKK and K $\pi\pi$ decays).

Summary and conclusion

Conclusion: the LHCb side

- Charmless hadronic *B* decays offer vast diversity of channels and physics observables, including
 - branching fractions;
 - weak phases $(\beta_{(s),eff}, \gamma) \rightarrow$ indirect searches for CPV;
 - strong phases \rightarrow better understanding of QCD/hadronic interactions.
- Situation pre-LHCb: some decays known, some full amplitude analyses performed.
- Situation post-Run I: many first observations, especially in new domains (e.g. baryons).
- Situation Run > II: many amplitude analyses performed, weak and strong phases measured in those decays.
- But this is not a straight path:
 - transition from counting experiments (branching fractions) to amplitude analyses;
 - need to refine existing tools to face the challenge of handling that much data.

Thank you!

Amplitude analysis of $B^0 \rightarrow K_s \pi^+\pi^-$: the Dalitz plot

Conservation of momentum

Mass constraints

All particles are pseudoscalars \rightarrow isotropic decay

Decay amplitude can be written

 \rightarrow in absence of dynamics, amplitude flat.

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{M}|^2 dm_{12}^2 dm_{13}^2$$

12

-4

-3

-3

Few orders of magnitude

- Luminosity at LHCb: fb⁻¹.
- Acceptance: 0.01-0.4 rad, ~25% of producted bb pairs.
- **bb cross-section** in acceptance: $72 154 \mu b$ (7-13 TeV).
 - So ~ 200 billions of pairs in acceptance for Run 1.
- Charmless branching fraction: 10-4–10-6.
 - Adding $\varepsilon(\text{rec}) \sim 10^{-3} \rightarrow \text{typical number of events from hundreds to tens of thousands.}$
- **Tagging power**: $5\% \rightarrow$ effective N: from few events to 1000.
- **Daughter energy**: 10-50 GeV/ c^2 , transverse energy: ~10% of that.
- **Decay-time resolution**: 0.02-0.05 ps, linear with delta(t).
- Efficiency on a K_s: depends strongly on decay. For Kshh, factor 20-50.

The isobar approach

Isobar approach: A_f written as coherent sum of partial amplitudes (isobars). Can be resonant or nonresonant.

Prospects

• From L. Silvestrini @ Manchester 2016 (to be taken with a grain of salt).

Parameter			Error		
	Now	$50/\mathrm{fb}$	$300/\mathrm{fb}$	$1000/\mathrm{fb}$	$3000/\mathrm{fb}$
$\Delta M_d \; [\mathrm{ps}^{-1}]$	0.002	0.0005	0.0002	0.0001	0.00006
$\Delta M_s \; [\mathrm{ps}^{-1}]$	0.021	0.005	0.002	0.001	0.0006
$\sin 2eta$	0.022	0.008	0.0026	0.0018	0.001
γ [°]	6.5	0.9	0.4	0.2	0.09
α [°]	5.5	1	Belle II		
β_s [°]	4	0.26	0.11	0.06	0.034
V_{us}	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$			
V_{cb}	2.7%	1%	Belle II		
V_{ub}	10%	1%	Belle II		
x		$1.5\cdot 10^{-4}$	$4.5\cdot10^{-5}$	$3\cdot 10^{-5}$	$1.5\cdot 10^{-5}$
y		10^{-4}	$3\cdot 10^{-5}$	$2\cdot 10^{-5}$	10^{-5}
q/p		0.01	0.003	0.002	0.001
ϕ [°]		3	0.9	0.6	0.3
A_{Γ}		$4 \cdot 10^{-5}$	$12\cdot 10^{-6}$	$8\cdot 10^{-6}$	$4 \cdot 10^{-6}$
$\alpha_s(M_Z)$	0.0005	0.0002			
m_t	$760 { m MeV}$	$250 { m ~MeV}$	theory lim	ited	
m_b	$50 { m MeV}$	$10 { m MeV}$			
B_K	1.3%	0.1%			
F_{B_s}	$5 { m MeV}$	$1 {\rm MeV}$			
F_{B_s}/F_{B_d}	1.4%	0.5%			
$F_{B_s}\sqrt{B_{B_s}}$	3.8%	3%			
ξ	2.5%	0.5%			

Prospects (2)

• From B. Golob @ Manchester 2016

	Observables	Belle or LHCb*	Be	lle II		LHC	b	
		(2014)	5 ab-1	50 ab-	1 8 fb ⁻¹	(2018)	50 fb	. 1
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^{\rm o})$		0.3°	0.6°	~	0.3°	ſ
	α [°]	85 ± 4 (Belle+BaBar)		1				
	$\gamma [\circ] (B \rightarrow D^{(*)} K^{(*)})$	68 ± 14		1.5	4	I .	1	
	$2\beta_{\rm s}(B_s \to J/\psi \phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	I	0.009	
Gluonic penguins	$S(B \rightarrow \phi K^0)$	$0.90^{+0.09}_{-0.19}$		0.018	0.2	?	0.04	ſ
	$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$		0.011				
	$S(B \rightarrow K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$		0.033				
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17 \pm 0.15 \pm 0.03^*$			0.12	I	0.03	
	$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0})$ [rad]	-			0.13		0.03	
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$		0.04		?		ſ
UT sides	V _{cb} incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$						ſ
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$		1.4%		~		
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$		3.0%		I		
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$		2.4%		I		
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶]	$96(1 \pm 26\%)$		5%		~		ſ
	$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	< 1.7		7%				
	$R(B \rightarrow D \tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$		3.4%		~		
	$R(B \rightarrow D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$		2.1%		I		
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$		6%				ſ
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2\pm4.0\pm0.8$		0.5				
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$		0.035				
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$				0.13	I	0.03	
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$		0.07				
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7						
Electroweak penguins	$\mathcal{B}(B \rightarrow K^{*+} \nu \overline{\nu}) [10^{-6}]$	< 40		30%				ſ
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		30%				
	$C_7/C_9 \ (B \to X_s \ell \ell)$	~20%		5%				
	$\mathcal{B}(B_s \to \tau \tau)$ [10 ⁻³]	-		-				
	$\mathcal{B}(B_s \to \mu \mu) [10^{-9}]$	$2.9^{+1.1}_{-1.0}$			0.5	I	0.2	

Belle 2 vs LHCb

	$e^+e^- ightarrow \Upsilon(4S) ightarrow Bar{B}$	$p\bar{p} \rightarrow b\bar{b}X$	$pp \to b\bar{b}X$
		$(\sqrt{s} = 2 \mathrm{TeV})$	$(\sqrt{s} = 13 \mathrm{TeV})$
	PEP-II, KEKB	Tevatron	LHC
Production	$1\mathrm{nb}$	$\sim 100~\mu{ m b}$	$\sim 500 \mu b$
cross-section			
Typical $b\bar{b}$ rate	$10\mathrm{Hz}$	$\sim 100\rm kHz$	$\lesssim 1\mathrm{MHz}$
Pile-up	0	1.7	1 - 40
Trigger efficiency	100~%	2080~%	
B hadron mixture	$B^+B^- (\sim 50 \%),$	B^+ (40%), B^0 (40%), B_s^0 (10	
	$B^0\overline{B}^0(\sim 50\%)$	Λ_{b}^{0} (10	%), others $(< 1\%)$
B hadron boost	small $(\beta \gamma \sim 0.5)$	large ($(\beta\gamma \sim 100)$
Underlying event	$B\overline{B}$ pair alone	Many addi	tional particles
Production vertex	Not reconstructed	Reconstructed	from many tracks
$B\overline{B}$ pair production	Coherent	Inc	oherent
	(from $\Upsilon(4S)$ decay)		
Effective flavour	$\sim 30\%$;	$\lesssim 6~\%$
tagging efficiency			

KsKK in a nutshell

