Status Report ADL and PSA Optimization AGATA Week Strasbourg 2018

L. Lewandowski, R. Hirsch, P. Reiter, B. Birkenbach, B. Bruyneel, H. Hess, J. Eberth

IKP Köln

13.09.2018

э

A D > A B > A B > A B >

- ADL: Reminder & status
- Time dependence of difference of measured and simulated traces & hole mobility

ADL Working Principle

Simulated Signals

ロト (日) (日) (日) (日) (日) (日)

ADL Data Bases

- Data library for each individual crystal
- New ADL bases for new crystals are continuously being provided
- New bases since last AGATA week: A013, B015, B016, C015
- Available at https://www.ikp. uni-koeln.de/research/agata/ index.php?show=download
- Different approaches (e.g. in-situ base). But as of now ADL still best solution available

(日)

э

Sac

ADL Source Code

- Source code available at https://www.ikp.uni-koeln.de/ research/agata/index.php?show=download
- Universal generalizable code, not restricted to AGATA crystals
- Different applications: GERDA signal discrimination, planar detectors, well detectors, GRETINA, ...
- Documentation available
- Bruyneel et al. EPJ A 2016, DOI 10.1140/epja/i2016-16070-9

Sac

э

PSA Results

- Position resolution about 4-5 mm (Söderström et al., Recchia et al.)
- Distribution of interactions: Non-physical allocation of hits
- Tracking efficiency: Simulation vs measurement
- Improve PSA performance

Figure of Merit for grid search

$$\mathrm{FOM} = \sum_{\mathrm{segments}} \sum_{i = t_j} |A_{i,\mathrm{sim}}(t_j) - A_{i,\mathrm{meas}}(t_j)|^{k_j}$$

 $A_i(t_j)$ pulse height of segment *i* at time step t_j

- Loss of information due to abs. value and summing
- Consider time evolution of $A_{i,sim}(t_j) A_{i,meas}(t_j)$
- Search for systematic deviations

э

A D > A B > A B > A B >

Difference of Measured and Simulated Signals

Time dependent difference of measurement and simulation

- Normalize traces to energy
- \blacksquare Restrict interaction position to ring three \Rightarrow radial electr. field
- Gate on radius = gate on drift length
- Black line: Mean difference
- Differences very small ✓ but systematic deviations in time present

э

Difference for Segment Signals

Difference for Core Signals

▲ロト▲舂×▲目×▲目× 目 のへの

Difference for Transient Signals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Drift velocities of charge carriers

Empirical model for hole drift velocity

$$v_D = \frac{\mu E}{\left(1 + \left(\frac{E}{E_0}\right)^{\beta}\right)^{\frac{1}{\beta}}}$$

 $\textit{v_D}$ drift velocity, μ hole mobility, E electrical field, $\textit{E}_{0},\,\beta$ empirical parameters

- Contradicting results/values for hole mobility
- Adjusted mobility ⇒ increased PSA performance?

A D > A P > A D > A D >

Sac

э

Results for hole mobility

source	$\mid \mu_{<100>} \left[\frac{\mathrm{cm}^2}{\mathrm{Vs}} \right]$	$\mid \mu_{<111>} \left[\frac{\mathrm{cm}^2}{\mathrm{Vs}} \right]$	remark
Reggiani et al. '77	66333	107270	T=78 K, from fit of $v_D(E)$ data (Bruyneel)
Omar and Reggiani '87	44675	-	T=80 K temperature dependent model $\mu = A/T^p$
Omar and Reggiani '87	33675	-	T=90 K GRETINA (?)
Bruyneel et al. '06	61824	61215	measured with MINIBALL
Bruyneel	62934	62383	measured with symmetric AGATA triple

₹ 9 **0 0**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Determination of hole mobility

- For given empirical model

 which mobility yields best results?
- ²²Na measurement for assessment of PSA performance

500

æ

Principle

- β^+ -decay of ²²Na
- Coincident detection
- Difference PSA result and physical interaction position
- Distance describes PSA performance

Sac

э

(a)

Visualization

590

Distance to Source

Distance source position to line calculated event-by-eventMean distance used to optimize PSA

Sac

э

(a)

Variation of Hole Mobility

 Each variation step: New ADL for all crystals, repeat PSA, repeat ²²Na analysis. Time consuming

• Optimal mobility at 55 $\frac{cm^2}{Vms}$ very close to ADL value

∋) ∋

Impact on Simulated Traces

- Notable impact for small radii
- (Nearly) no difference for larger radii (holes collected quickly)

Impact on Difference of Measurement and Simulation

- Core signal at radius r = 15-20 mm
- Slightly improved agreement
- Systematic deviations still present
- (Less statistics in 2nd picture)

Summary

- Continuous supply of ADL bases for new crystals
- Data bases for all crystals in frame (+more) available for download
- (Small) systematic deviations of measurement and simulation
- Investigation of hole mobility and drift velocity
- \blacksquare Hole mobility reduced by ${\sim}10\%$ yields slightly improved results

э

Thank you for your attention

Segments

500

э

<ロト <回ト < 注ト < 注ト

Segments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Transients

Drift Velocity parameters

766

B. Bruyneel et al. / Nuclear Instruments and Methods in Physics Research A 569 (2006) 764–773

Table 1

An overview of charge carrier mobility data in Ge at 78 K. The fit parameters to Eq. (1) for the electron and hole mobility along the (100) a (111) direction are presented. The parameters obtained from the data by Reggiani et al. [16] correspond to the fit shown in Fig. 6

Ref.	(100) direc	(100) direction				(111) direction			
	μ_0	β	$E_0(V/cm)$	μ_n	μ ₀	β	$E_0(V/cm)$	μ_n	
(A) Electro	n mobility param	eters (μ in (cm ² /)	Vs))						
[14]	40180	0.72	493	589	42420	0.87	251	62	
[10]	38609	0.805	511	-171	38536	0.641	538	510	
(B) Hole m	obility parameter	$s (\mu \text{ in } (\text{cm}^2/\text{Vs}))$							
[16]	66333	0.744	181	-	107270	0.580	100	_	
[10]	61824	0.942	185	-	61215	0.662	182	-	

nac

ж

・ロト ・ 日 ト ・ 日 ト ・ 日 ト