PSA: Introduction

PSA Implementation

- The signal decomposition algorithm (AGS)
- The quality of the signal basis
 - Physics of the detector
 - Impurity profile
 - Application of the detector response function to the calculated signals
- The preparation of the data
 - Energy calibration
 - Cross-talk correction Time alignment of traces
- A well working decomposition has additional benefits, e.g.
 - Correction of energy losses due to neutron damage

GRETINA Decomposition Basis

Courtesy David Radford

- Signal decomposition algorithm appears to work very well
 - Validated using simulated signals
- Most issues with the decomposition results appear to come from the fidelity of the signal basis
- Poor fidelity results in
 - Too many fitted interactions
 - Incorrect positions and energies
- Already included
 - Integral cross-talk
 - Differential cross-talk
 - Preamplifier rise-time
 - Differential cross-talk signals look like image charges, so they strongly affect position determination

Factors influencing performance

- Field and Weighting Potential:
 - Overall impurity concentration
 - Longitudinal impurity gradient (Linear? Nonlinear?)
 - Radial impurity gradient?
 - Hole diameter; hole depth; etching cycles; lithium thickness
 - Neutron damage (p-type)
- Charge carrier mobilities as a function of electric field

Factors influencing performance

- Crystal axis orientation (~ 5 degrees from maker)
- Crystal temperature
- Cross-talk (differential and integral)
- Neutron damage (trapping)
- Impulse response of 37 preamps
- Charge cloud size
- Digitizer nonlinearity

Observations: Clustering of points distributed inside detectors

What can be done?

- Extra timing information to constrain t₀
 - External fast detectors or RF signal
 - Ge-Ge coincidences Requires event building prior to decomposition; hard
- Further improvements in basis fidelity
 - Preamplifier impulse response function
 - Include charge cloud size and charge-sharing in signal generation
 - Especially important at small radius, near segment boundaries
 - But energy-dependent?
- Better field determination
 - Segment capacitance measurements as a function of bias

PSA tasks going forward

- Pristine basis generation with irregular basis using SIG-GEN
- Optimised basis with experimental corrections (from ⁶⁰Co flood data)
- Development of an integrated data set of two interactions/segment using collimated scanning data
- Development of an integrated data set of two interactions/segment using collimated scanning data from AGATA digitisers
- New PSA algorithm development

PSA tasks going forward

- Implementation of multiple interaction algorithm for testing in beam
- Inclusion of positon uncertainties in PSA output
- Including regular/irregular basis and ADL/SIG-GEN
- Multiple interaction algorithm implementation
- Tracking: use of uncertainties propagated from PSA

Perspectives

• Availability of AGATA capsules for characterisation

Continuity of available personnel to implement PSA algorithms

Talks this morning

- Online PSA performance
- ADL status
- Question on ADL
- In-situ experimental basis

- D. Ralet
- L. Lewandowski
- B. De Canditiis
- J. Ljungvall