Angular Correlations and Distributions with AGATA, What should we do?

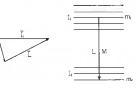
Joa Ljungvall

September 12, 2018

AGATA Week 2016

γ angular distributions and correlations

Angular distributions/correlations are Clebsch-Gordan intensive!


This because nuclear states have "sharp" spin and parity \rightarrow everything is written as sums over tensors with fixed L, π (EM field, geometry etc). Someone who enjoys hard work with little return could always keep the plane wave representation of the EM field and expand the nuclear states in a plane wave basis... And there are a lot of rotations, which in the world of QM always end up in a sum over CG and rotations D_{Mm}^L

```
My idea was to...
```

Give a nice introduction to Angular Distribution/Correlations but I got lost in summing indices and 3-j Wigner symbols so I will do something else...

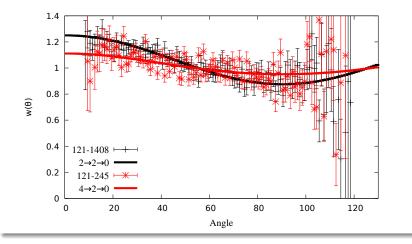
Simplest possible version of γ Angular Distribution/Correlation

Direction of γ rays $F_{L}^{M}(\theta)$

$$\sum_{m_i m_f} P(m_i) G(m_i m_f) F_L^M(\theta)$$

In $\gamma\text{-ray}$ spectroscopy different m-states unresolved

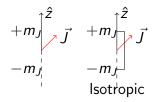
AGATA Week 2016


 γ -ray/particle/beam fixes m population and coordinate system

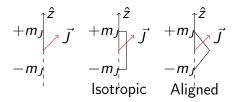
 π_i population distribution "known" (m_i to the left)

$\gamma\gamma$ angular correlations are under control

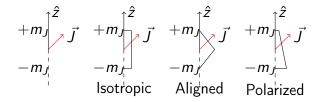
¹⁵²Eu source


AGATA Week 2016

- A nuclear state has $J\pi$ fixed, m_J can vary
- Given an axis of quantazition we have...

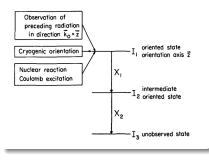

- Different distributions of m_J have different names
- Described in the language of "statistical tensors"

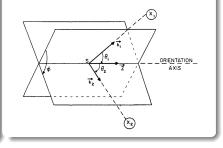
- A nuclear state has $J\pi$ fixed, m_J can vary
- Given an axis of quantazition we have...


- Different distributions of m_J have different names
- Described in the language of "statistical tensors"

- A nuclear state has ${\sf J}\pi$ fixed, ${\sf m}_J$ can vary
- Given an axis of quantazition we have...

- Different distributions of m_J have different names
- Described in the language of "statistical tensors"


- A nuclear state has $J\pi$ fixed, m_J can vary
- Given an axis of quantazition we have...


- Different distributions of m_J have different names
- Described in the language of "statistical tensors"

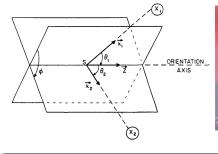
Direction Correlation from Oriented states (DCO), i.e. in-beam

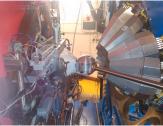
Physical system of interest

Experimental situation

Direction correlation from Oriented states (DCO), i.e. in-beam

Expressed as


$$W(\theta_{1},\theta_{2},\Phi)$$


$$= \sum_{\lambda_{1}\lambda\lambda_{2}} B_{\lambda_{1}}(I_{1})A_{\lambda}^{\lambda_{2}\lambda_{1}}(X_{1})A_{\lambda_{2}}(X_{2}) \qquad (10)$$

$$\times \frac{4\pi}{2\lambda_{2}+1} \sum_{q} \langle \lambda_{1}0\lambda q | \lambda_{2}q \rangle Y_{\lambda q}(\theta_{1},0) Y_{\lambda_{2}q}^{*}(\theta_{2},\Phi)$$

Direction correlation from Oriented states (DCO), i.e. in-beam

AGATA geometry for typical GANIL exp.

So, what should we do

?

AGATA Week 2016