

# In-beam efficiency and angular correlations with AGATA

R.M. Pérez-Vidal for the AGATA collaboration

AGATA Week | Strasbourg, 2018



### Outline

- o Introduction
- Experimental Setup
- AGATA performance
  - Spectra comparison
  - Efficiency
  - Angular correlations
  - Losses
  - Comparison with sources
- $\circ$  Summary



### Introduction

High resolution  $\gamma$ -ray spectroscopy inbeam

In-beam measurements taken during AGATA-VAMOS campaign 2015

Performance characterized by:

- 23 crystals (8ATC)
- Only DIGITIZER + ATCA pre-processing channels
- Chamber + cologne plunger
- Nominal position (235mm -7mm)
- Counting rate per crystal 50kHz



### **Experimental Setup** GANIL





Cologne differential plunger setup for RDDS measurements in grazing reactions. A.Dewald, Th. Pissulla, J. Jolie IKP-Uni. Köln.

#### LIFETIME MEASUREMENT



#### Multinucleon transfer reaction

Example: E682 <sup>92</sup>Mo +<sup>92</sup>Mo 716 MeV for proton rich nuclei



#### **Data preparation**

#### Local level:

- Energy calibrations
- Segment Time alignment
- Crosstalk correction
- Correction for non working segments
- Adaptive-Grid-Search used for PSA
- Neutron damage correction

#### **Global level:**

- Energy recalibration
- Time alignment
- Tracking

#### **Modes of analysis**

**Core Common:** Energy of the individual central contacts histogramed together

**Tracked** : Reconstructed energy by the tracking algorithm which uses the information given by the PSA.

- **Tracked CC:** energy built making the energy of the segments equal to the energy of the central contact
- **Tracked SG:** Energy reconstructed by using the sum of the energy of the segments











### **Efficiency measurement**

In-beam efficiency from  $\gamma - \gamma$  **coincidences:** 

- Inelastic channel <sup>92</sup>Mo
- Two methods: efficiency from gammas at 0° (1) and gammas at 90° (2)
- Gate on 773keV (4+->2+)
- Efficiency at 1509 keV (2+->0+)



**Efficiency raw:** taking into account only the areas not correction factors applied for angular correlations or losses due to the high counting rates



#### **Efficiency measurement**

In-beam efficiency from  $\gamma - \gamma$  **coincidences:** 

- Inelastic channel <sup>92</sup>Mo
- Two methods: efficiency from gammas at 0° (1) and gammas at 90° (2)
- Gate on 773keV (4+->2+)
- Efficiency at 1509 keV (2+->0+)

| AGATA<br>REACTION CHAMBER<br>BEAM<br>BEAM<br>BEAM<br>RECINGER<br>902 | Angular correlation in-be<br>$\epsilon_{peak}(E_2) = \frac{N_{\gamma,coinc}(E_2)}{N_{\gamma,sing}(E_1)  W(\theta)} \frac{1}{1}{1 + \alpha_T(E_2)}$ |                      |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| TARGET-like                                                          | Efficiency raw (0°)                                                                                                                                | Efficiency raw (90°) |  |
| Core Common                                                          | 1.39 (15)                                                                                                                                          | 1.45 (13)            |  |
| TrackCC                                                              | 1.45 (12)                                                                                                                                          | 1.52 (11)            |  |
| TrackSG                                                              | 1.50 (12)                                                                                                                                          | 1.50 (11)            |  |

**Efficiency raw:** taking into account only the areas not correction factors applied for angular correlations or losses due to the high counting rates







#### **In-beam angular correlation**

- In the in-beam case the source is oriented
- The gamma-gamma correlations have a triple correlation between the beam direction and the two gamma rays
- A series of tests are in progress in order to estimate the angular correlation corrections

#### In-beam angular correlation tests

 $\gamma_2$  1509 keV Angular distribution 4+->2+ <sup>92</sup>Mo Angular distribution normalized 4+->2+ <sup>92</sup>Mo + fit 12000 10000 10 8000 Can be used to get  $\sigma/J$  and the A<sub>2</sub>=0.226 A<sub>4</sub>=-0.395 angular correlations with 6000 *adpcolinux* program 4000 2000 counts Limited range of Angle beam- gamma1 (773 keV) angles to do the fit Angular distribution 4+->2+ <sup>60</sup>Co Normalization with a non 7000 6000 oriented source to correct by 5000 the geometrical effects 4000 20 160 180 40 60 120 140 100 3000 angle beam-gamma1 (deg) 2000 1000 Work in progress (!) Different energies Angle "beam"- gamma1 (1172 keV)

Tracked case of <sup>92</sup>Mo at 0°

γ<sub>1</sub> 773 keV

4⁺

2+

(deg)

gamma2

beam-

Angle

150

120



10000

5000

140

Angle beam-gamma1 (deg)

#### **In-beam angular correlation tests**

Tracked case of <sup>92</sup>Mo at 0°



~10% of losses at low angles (~10°) due to the tracking have been observed with the sources

1) Matrix of correlations from the same event: coincident angles (diagonal <10°) should have losses

2) Matrix of correlations from different events: coincident angles (diagonal <10°) don't interfere (different events)

Method: comparison of the integrals of matrices 1) and 2) normalizing with the integral in non interfering angles (outside the diagonal)

Work in progress but very low statistics in E682



#### In-beam losses due to high counting rates

| carrier LSC GUI 🔷 🔹 🗖     |                             |                   | + = = >                     |         |        |         |
|---------------------------|-----------------------------|-------------------|-----------------------------|---------|--------|---------|
| Global Status & Control   |                             |                   |                             |         |        |         |
| o going                   |                             |                   |                             |         | 44.5 k | 150k/s1 |
| Cruetale Statue & Control |                             | aces   Evnert Cor | trol View                   |         | 30     |         |
| - C Show \/blidations     |                             | ctions            | - IZ Show Missing           |         |        |         |
| 1 Show valuations         | it isnow here               | CCIO(15)          | P Show Missing              |         |        |         |
| C average                 | <ul> <li>average</li> </ul> |                   | <ul> <li>average</li> </ul> |         |        |         |
| C total                   | Scale C total               | 1.0 ÷ Scale       | C total                     | ÷ Scale |        |         |
| C maximum                 | C maximum                   |                   | C maximum                   |         |        |         |
| c minimum                 | C minimum                   |                   | C minimum                   |         |        |         |
|                           |                             |                   |                             |         |        |         |
| Per Crystal Status & Cont | rol                         |                   |                             |         |        |         |
| 001 0 00100               |                             |                   | (0.) h                      | 1       |        | 1001/2  |
| 00A going                 |                             |                   | 42.1 K                      |         |        | 100K/S  |
| 000 going                 |                             | 2                 | 42.0.4                      |         |        | 100N/5  |
| 020 going                 |                             |                   | 43.9 K                      |         |        | 100k/s  |
| 02R going                 |                             |                   | 19.7 K                      |         |        | 100k/s  |
| 03A going                 |                             |                   | 48.0 K                      |         |        | 100k/s  |
| 03B going                 |                             |                   | 46.2 k                      |         |        | 100k/s  |
| 03C going                 |                             |                   | 40.2 K                      |         |        | 100k/s  |
| 04A going                 |                             |                   | 45.2 k                      |         |        | 100k/s  |
| 04B going                 |                             |                   | 41.9 k                      |         |        | 100k/s  |
| 04C going                 |                             |                   | 44.8 k                      |         |        | 100k/s  |
| 10A going                 |                             |                   | 47.6 k                      |         |        | 100k/s  |
| 10B going                 |                             |                   | 42.2 k                      |         |        | 100k/s  |
| 10C going                 |                             |                   | 48.0 k                      |         |        | 100k/s  |
| 11A going                 |                             |                   | 44.9 k                      |         |        | 100k/s  |
| 11B going                 |                             |                   | 48.0 k                      |         |        | 100k/s  |
| 11C going                 |                             |                   | 41.8 k                      |         |        | 100k/s  |
| 12A going                 |                             |                   | 45.2 k                      |         |        | 100k/s  |
| 12B 🔵 going               |                             |                   | 48.6 k                      |         |        | 100k/s  |
| 12C 🔵 going               |                             |                   | 45.7 k                      |         |        | 100k/s  |
| 13A 🔵 going               |                             |                   | 43.9 k                      |         |        | 100k/s  |
| 13B 🔵 going               |                             |                   | 45.0 k                      |         |        | 100k/s  |
| 13C 🔵 going               |                             |                   | 41.7 k                      |         |        | 100k/s  |
|                           |                             |                   |                             |         |        |         |
| 1                         |                             |                   |                             |         |        |         |
|                           |                             |                   |                             |         |        |         |

Pile up

### GTS limitation

High multiplicity



E682 rates-23 crystals

### **In-beam losses**

#### **Pile-up**

|                          |                | carrier LSC GUI           |             |        | • - 0   |
|--------------------------|----------------|---------------------------|-------------|--------|---------|
| Global Status & Control  |                |                           |             |        |         |
| aoing                    |                |                           |             | 44.5 k | [50k/s] |
| Constale Statue & Contro |                | ces   Expert Control View |             |        | •       |
| - C Show Validations     |                | ions                      | sing        |        |         |
| I Show valuations        | i Silow Neject | IOTID)                    | sing        |        |         |
| C average                | C average      | average                   |             |        |         |
| C total                  | Scale C total  | 1.0 🛨 Scale               | 1.0 🛨 Scale |        |         |
| C maximum                | C minimum      | C minimum                 |             |        |         |
| • minimum                | ,              |                           |             |        |         |
|                          |                |                           |             |        |         |
| Per Crystal Status & Con | trol           |                           |             |        |         |
| 004 0 0010               |                | 421 8                     |             |        | 100k/s  |
|                          |                | 37 5 k                    |             |        | 100k/s  |
| 00C going                |                | 43.9 k                    |             |        | 100k/s  |
| 02A going                |                | 39.7 k                    |             |        | 100k/s  |
| 02B going                |                | 48.0                      | k           |        | 100k/s  |
| 03A going                |                | 43.9 k                    |             |        | 100k/s  |
| 03B going                |                | 46.2 k                    |             |        | 100k/s  |
| 03C 🔵 going              |                | 48.0                      | k           |        | 100k/s  |
| 04A 🔵 going              |                | 45.2 k                    |             |        | 100k/s  |
| 04B 🔵 going              |                | 41.9 k                    |             |        | 100k/s  |
| 04C 🔵 going              |                | 44.8 k                    |             |        | 100k/s  |
| 10A 🔵 going              |                | 47.6                      | k           |        | 100k/s  |
| 10B 🔵 going              |                | 42.2 k                    |             |        | 100k/s  |
| 10C 🔵 going              |                | 48.0                      | k           |        | 100k/s  |
| 11A 🔵 going              |                | 44.9 k                    |             |        | 100k/s  |
| 11B going                |                | 48.0                      | k           |        | 100k/s  |
| 11C going                |                | 41.8 k                    |             |        | 100k/s  |
| 12A 🔵 going              |                | 45.2 k                    |             |        | 100k/s  |
| 12B going                |                | 48.6                      | k           |        | 100k/s  |
| 12C going                |                | 45.7 k                    |             |        | 100k/s  |
| 13A going                |                | 43.9 k                    |             |        | 100k/s  |
| 13B going                |                | 45.0 k                    |             |        | 100k/s  |
| 13C going                |                | 41.7 k                    |             |        | 100k/s  |
|                          |                |                           |             |        |         |

#### ~15-20% of loss at ~40-50kHz



E682 rates-23 crystals

### **In-beam losses**

#### **Trigger Processor**





E682 rates-23 crystals



#### In-Beam efficiency at **1509keV** with gamma-gamma coincidences

|             | Average Efficiency raw | Efficiency corrected by losses |
|-------------|------------------------|--------------------------------|
| Core Common | 1.42 (14)              | 2.09 (21)                      |
| TrackCC     | 1.49 (12)              | 2.43 (20)                      |
| TrackSG     | 1.50 (12)              | 2.45 (20)                      |

(!) Angular correlation correction not applied yet (only the ~ 10% losses seen with the sources in the tracking). For doing the average efficiency the angular correlation correction needs to be done. The small differences found in the raw efficiency for the 2 methods indicate a small influence of the angular correlation.





# **Summary**

- The performance have been evaluated for the AGATA+PLUNGER+VAMOS++ setup used during the experimental campaign in 2015 for the experiment E682.
- The E682 data is not the best to perform efficiency measurements due to the presence of the double peak structure because of the plunger device usage.
- The AGATA efficiency for different methods of data treatment have been experimentally determined by means of calibrated gamma-ray sources and compared with in-beam gamma-ray efficiency (for the  $2+ \rightarrow 0+ 1509$  keV transition in 92Mo).
- Corrections for pile up losses and trigger processor losses need to be applied to reach the efficiency evaluated with the sources. The experimental results are understood in terms of losses.
- The angular correlations corrections are still under investigation for the in-beam measurements. Even if they are small in our case, next investigations will be done with the Core Common mode.



# In-beam efficiency and angular correlations with AGATA

R.M. Pérez-Vidal for the AGATA collaboration



#### UNIÓN EUROPEA

Cofinanciado por el Fondo Europeo de Desarrollo Regional Una manera de hacer Europa Supported by MINECO, Spain Grant n. FPA2014-57196-C5

