Report on recent AGATA Simulation activities

On behalf of the

Simulation Working Group

Marc Labiche (marc.labiche@stfc.ac.uk)

18t^h AGATA week, Milano - 11th Oct 2017

Outline

Generalities regarding the AGATA code

Recent activities:

> Simulations for 4π-AGATA physics white paper

- Generic simulations
- Specific simulations for experiment at:
 - Jyvaskyla (See next talk from A. Lopez-Martens)
 - FAIR
 - CERN
- Possible AGATA + MINIBALL setup
- > 2x 1pi AGATA setup
- Update on simulated efficiencies and validation with sources. (See my talk this afternoon)

Generalities

• AGATA Code (AC) still maintained and available here:

- http://npg.dl.ac.uk/svn/agata
- Check it out with command: svn co http://npg.dl.ac.uk/svn/agata

• AC still compatible with Geant4.10.3 and prior versions.

 To use GDML geometry files, Geant4 must be installed with the GDML option.

(Please, see the INSTALL file in the Agata code svn repository)

- GDML files available here:
 - <u>https://github.com/malabi/gdml-files</u>
 - Get it with command: git clone https://github.com/malabi/gdml-files/AGATA
 - Still working on producing the GDML file for DIAMANT chamber.

Requests from W. Korten:

- AGATA efficiency for a 1π and 4π array, at 1MeV and high multiplicities.
- Summing effects in 4π AGATA.
 - High multipolarity transitions competing with low multipolarity transitions.

• AGATA 1π vs 4π , at 1MeV and high multiplicities

Cascade of γ -rays: E_i = 150keV+ 100keV * i

• AGATA 1π vs 4π , at 1MeV and high multiplicities

Table 3: Gain factors when migrating from AGATA 1π to AGATA 4π

Summing effect in 4π AGATA

• Ex: ⁵³Fe

• Sim. Inputs:

- 4π AGATA
- Source ⁵³Fe at rest
- Chamber with 5mm and 110mm radius
- Enhanced Ge dead area
- External event generator
- 10⁵ events w/r to branching ratios
- Default tracking parameters for both MGT and OFT.

High multipolarity transition competing with low multipolarity transition

- Results:
 - Still large summation effects after tracking.
 - Slightly less with OFT than MGT

Expected number of counts if no summation Given branching ratio and efficiency.				36	0	0	19
Efficiency (%)	36.4	32.1	29.2	-	-	-	-
Peak counts - OFT	35929	31663	28759	427	85	58	23
Efficiency (%)	35.0	30.6	28.8	-	-	-	-
Peak counts - MGT	34545	30187	28398	775	351	239	63
Sum detection	no	no	no	yes	yes	yes	yes
Real detection	yes	yes	yes	yes	no	no	yes
Energy [keV]	701.1	1011.5	1328	1712.6	2029.1	2339.5	3040.6

Tracked energy spectrum

Summing effect in 4π AGATA

Energy spectrum before (core sum in blue) and after tracking (OFT in red)

Specific simulations

• For Jyvaskyla:

Request from P. Greenlees, J. Pakarinen, D Jenkins

Specific simulations

• For FAIR:

Request from O. Wieland 208Pn on 208Pb at 1GeV/A

Specific simulations

• For CERN:

Request from M. Zielinska and L. Gaffney.

Safe Coulomb excitation of a mixed 144Ba/144Nd beam on a 208Pb

Joa is on the case ...

Some preliminary results AGATA vs MINIBALL simulation but work is still on-going.

AGATA +MINIBALL

18 ATCs compact &5 MTCs at 14.4cm from target,2mm AI Chamber (83mm radius)

Efficiency:

Energy [keV]	18 ATC (%)	5 MTC (%)	SUM (%)		MINIBALLco	ntribution (%)
(Isotropi c source)	addback within cluster	addback within cluster	No addback	addback within cluster	No addback	addback within cluster
121	36.4	13.2	49.3	49.6	26.5	26.9
244	28.8	9.8	36.5	38.6	25.3	26.4
344	24.4	7.9	29.2	32.3	24.1	26.1
411	22.4	6.9	26.0	29.3	23.5	25.7
867	15.7	4.4	16.6	20.1	21.8	25.4
964	15.0	4.2	15.7	19.2	21.8	25.2
1172	13.5	3.6	13.8	17.1	20.8	24.7
1300	12.6	3.4	12.9	16.0	21.2	24.8
1332	12.7	3.5	12.9	16.2	21.6	25.6
1408	12.2	3.2	12.3	15.4	20.2	24.0

At 1.33MeV, efficiency with addback is ~16%, while core common is ~13%.

AGATA +MINIBALL

20 ATCs compact & 8 MTCs:

Other configuration: 20 ATC + 8 MTC:

2 incomplete hemispheres with 10 ATC and 4 MTC each and shifted by 120 mm towards target.

Space for 5 MTCs on each side.

AGATA +MINIBALL

20 ATCs compact & 8 MTCs:

Efficiency:

Energy [keV]	20 ATC (%)	8 MTC (%)	SUM		3 MTC (%) SUM MINIBALL contr			ntribution (%)
(Isotropi c source)	addback within cluster	addback within cluster	No addback	addback within cluster	No addback	addback within cluster		
121	53.0	12.0	64.7	65.0	18.4	18.5		
244	41.6	9.0	48.0	50.6	17.7	17.8		
344	35.5	7.1	38.6	42.6	16.6	16.7		
411	32.6	6.5	34.5	39.1	16.5	16.6		
867	22.4	4.2	21.8	26.6	15.6	15.8		
964	21.2	4.0	20.6	25.2	15.5	15.9		
1172	19.3	3.3	18.1	22.6	14.4	14.6		
1300	18.2	3.1	17.1	21.3	14.6	14.6		
1332	18.0	3.2	17.0	21.2	14.7	15.1		
1408	17.5	3.1	16.3	20.6	14.7	15.0		

Efficiency with addback with clusters

At 1.33MeV, efficiency with addback is to 21%, while core common is 17%.

$2 \times 1\pi$ compact configuration

Request from AMB

Shifted 100mm toward target

> Input Multiplicity 2: A γ -ray ($E\gamma$) emitted with another at 150keV Input Multiplicity 10: $E_{\gamma} = 150 \text{keV} + i^{*} \text{dE}$ with dE=150keV

Resolution at 1MeV σ =1.3 keV at 5% v/c σ =1.4 keV at 10% v/c

Simulated Core efficiency and Validation

	Table 5: Measured AGATA efficiencies									
Energy	Ref	Measured	GEANT4 Single	GEANT4 Single _{scaled}						
(keV)		in single/core	efficiency / core	efficiency /core						
1.1 MeV	N. Lalovíc, NIMA 806 (2016)	0.113% in nominal	0.13%	0.12%						
$1.4 \mathrm{MeV}$	E. Clément, NIMA 855 (2017)	0.097% in nominal	0.11%	0.10%						
$1.3 \mathrm{MeV}$	R. Perez, AGATA Week 2016	0.095% in nominal	0.12%	0.11%						
$1.3 \mathrm{MeV}$	R. Perez, AGATA Week 2016	0.173% in compact	0.22%	0.21%						
$1.1~{\rm MeV}$	E661	0.228% in compact	0.253%	0.234%						

Courtesy of E. Clement

G4 Single_{scaled} obtained with canberra crystal efficiencies (red)

Now better agreement is obtained when scaling with re-measured crystals relative efficiencies (blue) See talk this afternoon

Summary

- Lots of simulations have been performed for the 4pi AGATA White Paper
 - Future Exp. at Jyvaskyla, CERN, FAIR
- A Setup AGATA-MINBALL and 2x1π have been investigated
- Progress made in the validation of the Simulation w/r to the measurements with sources.
- Still room for the code development/improvement/documentation
 - Volunteers welcome.

Thank you

$2 \times 1\pi$ compact configuration

Request from AMB

Shifted 100mm toward target

> Input Multiplicity 2: A γ -ray ($E\gamma$) emitted with another at 150keV Input Multiplicity 10: $E_{\gamma} = 150 \text{keV} + i^{*} \text{dE}$ with dE=150keV

Resolution at 1MeV σ =1.3 keV at 5% v/c σ =1.4 keV at 10% v/c

Generalities

• GDML files available for AGATA:

📮 malabi / gdml-files		O Watch3★ Star0% For				% Fork 2]
↔ Code ① Issues 0 ۩ Pull request	s 0 III Projects 0 Insights -						
Branch: master - gdml-files / AGATA /		[Creat	e new file	Find	file History	
Alain Goasduff Added NEDA gdml files			Late	st commit :	7fadce	8 12 days ago	
GDMLSchema	add AGATA					2 years ago	
GanilChamb	adding GanilVamosChamb2b					2 years ago	
HoneyComb	rm 1 file					2 years ago	
NEDA	Added NEDA gdml files					12 days ago	

Users need to edit the trunk/CMakeLists.txt file and set the variable gdmIPATH correct path to the downloaded gdmI-files/AGATA/ directory:

set(gdmIPATH "/mnt/hgfs/Echanges/MyGitHubRep/gdmI-files/AGATA/")

Generalities

• GDML files available:

gdml files for GEANT4 simulations of NP detection suystems

17 commits		🛇 0 releases	2 contributors
Branch: master - New pull req	uest		Find file Clone or download -
Alain Goasduff Added NEDA	gdml files		Latest commit 7fadce8 12 days ago
AGATA	Added NEDA gdml files		12 days ago
GALILEO	Add gdml files for GALILEO TC / GALILEO	Plunger device / GALILEO SPIDER	9 months ago
MARA	Adding MARA folder		9 months ago
MuGasT	adding MuGasT chamber		4 months ago
SToGS/ATC-Demo	Adding SToGs ATC demo		8 months ago
README.md	Update README.md		10 months ago

New Ancillarys:

- NEDA added to the AC package (courtesy of A. Goasduff)
- NEDA geometry defined with GDML
 - Some issues observed when comparing results with G4.9 & G4.10
 under investigations

• New analysis tools:

- trunk/analysis/mgt++
 - Same as mgt/ but producing a root output file " mgt.root" with a root tree called MGTTree
 - Still need to add all the other histograms mgt can provide.

New analysis tools:

Crystal	Crystal	Measured Relative	Geant4 Relative	Ratio
Location	Name	Efficiency (Canberra)	Efficiency (E. Clement)	
00A	a001	0.84	0.86	0.98
00B	b004	0.782	0.87	0.90
00C	c010	0.78	0.858	0.91
01A	a010	0.76	0.86	0.88
01B	b012	0.816	0.87	0.94
01C	c014	0.78	0.858	0.91
02A	a009	0.821	0.86	0.95
02B	b005	0.8	0.87	0.92
02C	c008	0.778	0.858	0.91
03A	a005	0.79	0.86	0.92
03B	b002	0.872	0.87	1.00
03C	c009	0.811	0.858	0.95
04A	a004	0.78	0.86	0.91

Ratio values are used as input in the AgataRead file and applied when filling histograms as follow:

For singles mode : $histo \rightarrow fill(Energy[cryst], Ratio[cryst])$ For calorimeter mode: $histo \rightarrow fill(\Sigma Energy[cryst], \Box Ratio[cryst])$

Note: Table re-ordered in the AgataRead input file so that the first crystal in the table correspond to the first crystal positioned in the simulation.

New analysis tools:

• Next step is to produce the event file after this ratio correction for the tracking algorithms.

 Alternatively, one can increase coaxial and back passive areas in Ge crystals.

- Pros:
 - Effect propagated all the way through tracking algorithm
 - Same for any incoming energy.
- Increasing the Ge passive area is done in A180Solid.list

Simulated Core efficiency and Validation

Table 5: Measured AGATA efficiencies									
Energy	Ref	Measured	GEANT4 Single	GEANT4 Single _{scaled}					
(keV)		in single/core	efficiency / core	efficiency /core					
1.1 MeV	N. Lalovíc, NIMA 806 (2016)	0.113% in nominal	0.13%	0.12%					
$1.4 \mathrm{MeV}$	E. Clément, NIMA 855 (2017)	0.097% in nominal	0.11%	0.10%					
$1.3 \ {\rm MeV}$	R. Perez, AGATA Week 2016	0.095% in nominal	0.12%	0.11%					
$1.3 \ {\rm MeV}$	R. Perez, AGATA Week 2016	0.173% in compact	0.22%	0.21%					
$1.1 \ {\rm MeV}$	E661	0.228% in compact	0.253%	0.234%					

Courtesy of E. Clement

Still room for improvements:

- check simulations with a realistic chamber geometry
- add angular correlation effects

- check with an optimised/measured set of thickness parameters for the Ge passive areas

High multipolarity transition competing with low multipolarity transition

Results:

Energy [keV]	701.1	1011.5	1328	1712.6	2029.1	2339.5	3040.6
Real detection	yes	yes	yes	yes	no	no	yes
Sum detection	no	no	no	yes	yes	yes	yes
Peak counts - MGT	34545	30187	28398	775	351	239	63
Efficiency (%)	35.0	30.6	28.8	-	-	-	-
Peak counts - OFT	35929	31663	28759	427	85	58	23
Efficiency (%)	36.4	32.1	29.2	-	-	-	-
Expected number of counts if no summation given branching ratio and efficiency				36	0	0	19

Result for monoenergetic source (Mult=1):

Energy [keV]	701.1	1011.5	1328	1712.6	2029.1	2339.5	3040.6
Efficiency (%)	38.9	34.5	30.47	27.1	24.5	22.3	18.75