

AGATA@GANIL Status report

AGATA week 2018

The GANIL Campaign organization

The AGATA campaign at GANIL has been extend to the end of 2020

Each GANIL PAC has a "PrePac" workshop with a specific call : AGATA Collaboration Meeting

- ✓ 1st PAC in 2014 : VAMOS (10 experiments approved)
- ✓ 2nd PAC in 2015 : VAMOS || NEDA (10 experiments approved)
- ✓ 3rd PAC in 2016 : NEDA (6 experiments approved)
- ✓ 4th PAC in 2017: Fully opened by the new GANIL management : 2(1) VAMOS (MUGAST) approved

Pré-PAC in February 2018 :

- ► 12 MUGAST/Coulex with SPIRAL1 beams
- ➢ 6 Gas-Filled
- ≻5 NEDA-DIAMANT
- ≻3 VAMOS Std

853 UT have been already approved628 UT have been performed over 22 experiments

✓ 5th PAC in Autumn 2018: call for MUGAST-AGATA-VAMOS experiments only

5 MUGAST-AGATA-VAMOS experiments proposed

Thanks to Silvia for her work in the scientific coordination of the campaign since 2012	Backlog is 1 PARIS-DIAMANT 28 UT 3 NEDA (+ DIAMANT, PARIS, FATIMA) 66 UT 4 VAMOS 92 UT 1 MUGAST 39 UT + Re-schedule of a failed 2018 LISE exp.
E.Clément	✤ 2019 beam time should be ~4 months

□ Data Acquisition NARVAL \rightarrow DCOD: process full real-time w/o PSA from 6 to 12kHz per core

- □ Improved PCIe readout libraries for both GGP and LINCO2
- □ Successful integration of NUMEXO2 and its TP in AGATA via the GTS and the DCOD/TM/RCC systems
- Learning curve in the CEPH technology
- □ Data analysis and access to the data
 - * Improved access to the GRID data
 - * Successful integration of NEDA and DIAMANT in the AGATA data processing
 - * 2nd Data Analysis Workshops in January 2018
 - * 3rd focused on the NEDA-DIAMANT-AGATA campaign in early 2019

Efficiencies

*Lot of efforts on source and in-beam efficiencies studies devoted in 2017 * In 2018, we focused our attention on the high rate-capabilities approaching the hardware/software limits

Operation

*We ran 22 experiments in ~11 months of beam time (~2 experiments/month) *35 Detectors take data since 2017 in stable conditions

- *There are 1330 electronics channels to manage (Detectors, FEBEE, DAQ, calibrations) *~60 000 parameters are prepared to reach the final spectrum
- * 430 To of data produced including the 2018 run
- *In-beam data since 2014, the campaign is approved until 2020 (7 years operation) *Detectors maintained cold for more than 1200 days without accidental warming up

Cumulative [TB]

laboratoire commun CEA/DS

NRS/IN2P3

Long term Visitors

<u>Visitors 2014-2015</u> A.Korichi (CSNSM)- GANIL Support – (18 months) R.Perez (IFIC) – Spain and GANIL support (3 months) C. Andreoiu (Simon Fraser University) – Canada and GANIL support (6 months)

<u>Visitors 2016</u> M. Zielinska (SphN) – GANIL/SPhN Support (6 months) R. Perez (IFIC) – Spain and GANIL support (3 months)

<u>Visitors 2017</u> M. Zielinska (DphN) – GANIL/DPhN Support (4 months) G. Simpson (LPSC) – GANIL/LPSC Support (4 months)

<u>Visitors 2018</u> M. L. Jurado (IFIC) – Spain support (4 months)

The GANIL Campaign [2015-2020]

Courtesy J. Dudouet

E.Clément

2017-2018: 35 detectors on-line : Efficiencies measured in nominal position at 1.408 MeV Core 3.4(1)% (GEANT4 = 3.6%) AddBack 4.8(1)% (5.1%) Tracked 4.4(1)% (5.5%)

- ✓ Nucleons transfer
- ✓ Fusion-fission
- ✓ Transfer-fission

E. Clément et al., NIMA 855, 1-12 (2017)Y. H. Kim et al., Eur.Phys.J. A 53, 162 (2017)

The GANIL Campaign [2015-2020]

Lifetime measurements

2015-2017: 93% of performed experiments are lifetime measurements from fs to µs

E. Clément et al., NIMA 855, 1-12 (2017)Y. H. Kim et al., Eur.Phys.J. A 53, 162 (2017)

FATIMA-PARIS detectors coupled to AGATA

The GANIL Campaign [2015-2020]

2018 run NEDA campaign

DIAMANT and NEDA in full digital system making use of the NUMEXO2 boards and coupled to AGATA with the AGATA GTS system

 \times 20 increase in (n γ ²) event rate readout compared to the NWALL-DIAMANT-EXOGAM system in VME-VXI.

T. Huyuk et al, Eur. Phys. J. A (2016) **52**: 55 Page 5
E. Clément et al., NIMA 855, 1-12 (2017)
J. J. Valiente-Dobon et al, to be submitted

54 self produced NEDA detectors at forward angles and 14 NWALL detectors + plunger
~9% γ-efficiency at 1.4 MeV after tracking
>20% efficiency for 1 neutron
>35% efficiency for 1 proton

Time of flight

The NEDA setup : the 2n selectivity

The NEDA setup : the 2n selectivity

 0^+

0

D. Ralet, M. L. Jurado, EC et al, OUPS Plunger, J. Ljungvall et al, NIM A 679 (2012) 61-66. Degrader mode

Interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

•Characterizing the islands of inversion, formed near the magic numbers.

•These are new regions of deformation with configurations involving intruder orbitals from the above main shell.

•While a signature of deformation is given by the energy of the first excited states, their lifetimes allow a better understanding of their properties by comparison with LSSM calculations

z	69Ge	70G e	71Ge	72G e	73Ge	740 e	750e	76G e	77Ge	78Ge	79Ge	80G e	81G e	82Ge	83Ge	84G c	85Ge
	68Ga	69Ca	70Ga	710a	72 0 a	730a	74Ga	75Ga	76Ca	770a	78Ga	790a	80Ga	81 Ga	82 Ga	83Ga	84Ga
30	67Zn	68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	772n	78Zn	79Zn	80Zn	81Zn	82Zn	83Zn
	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79Cu	80Cu	81Cu	82Cu
28	65Ni	66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72 N i	73Ni	74Ni	75Ni	76 N i	77Ni	78 N i	79Ni		
	64Co	65Co	66Co	67Co	68Co	69Co	70Co	71Co	72Co	73Co	74Co	75Co	76Co				
26	63Fe	64Fe	65Pe	66 Fe	67 Fe	68 Fe	69 Fe	70 Fe	71Fe	72 Fe	73Fe	74Fe					
	62Mn	63Mn	64Mn	65Mn	66Mn	67Mn	68Mn	69Mn	70 M n	71Mn							
24	61Cr	62Cr	63Cr	64Cr	65Cr	66Cr	67Cr	68Cr									
	37		39		41		43		45		47		49		51		N

LPNS interaction

ACATA ACATA ACATA ADVANCED GAMMA TRACKING GARMAY

Interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

Collecting spectroscopic data like transition probability constraining the theoretical description of the Island of inversion from N=28 to N=40:

> What is the influence of the vg9/2 and vd5/2 orbits ?

> What is the influence of the proton excitations across Z=28 ?

How collectivity change when decreasing the number of proton in the f7/2 orbital

Lifetimes of the 4⁺ states in ^{62;64}Fe and the 11/2⁻ in ^{61;63}Co and ⁵⁹Mn

M. Klintefjord et al., PRC 95, 024312 (2017)

Interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

Collecting spectroscopic data like transition probability constraining the theoretical description of the Island of inversion from N=28 to N=40:

> What is the influence of the vg9/2 and vd5/2 orbits ?

> What is the influence of the proton excitations across Z=28?

How collectivity change when decreasing the number of proton in the f7/2 orbital

Lifetimes in ⁵⁴Ti and in neighboring isotopes have been determined

A. Goldkuhle et al. to be submitted

Interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

⁷³Ga ground-state: 3/2⁻, 1/2⁻ doublet?

 \rightarrow determine the M1 component of the first 5/2-

Obtained lifetime :

- Fast M1 component in the decay of the first 5/2⁻ state.
- Confirms 1/2⁻, 3/2⁻ g.s. doublet

I. Čeliković, Ph.D. Thesis, GANIL 2013 C. Louchart et al., Phys. Rev. C, 87 054302 (2013)

I. Celikovic, C. Michelagnoli et al.

The quenching of the N=50 gap towards ⁷⁸Ni can be investigated looking at the Spectroscopy of excited states involving particlehole excitations across the N=50 gap

⁸¹Ga spectroscopy

J. Dudouet et al, to be submitted

- First lifetime of excited states measured in ⁸⁸Kr
- Lifetime measured with better accuracy in ⁸⁶Se
- First lifetime measured in the very exotic ⁸⁴Ge
- Unexpected enhancement of collectivity in ⁸⁴Ge

Sudden rise of collectivity after the N=50 shell closure

... in contradiction with shell model calculation

C. Delafosse et al., submitted to Phys. Rev. Lett.

Shape evolution in fission fragments in the A~100 region

AGATA-VAMOS and a plunger + FATIMA for lifetime measurements using the ${}^{9}Be({}^{238}U,FF)$ reaction

E.Clément

J. Dudouet et al. Phys. Rev. Lett. 118, 162501 (2017)

Shell evolution around ¹⁰⁰Sn

E.Clément

courtesy of R. Perez Vidal

Shell evolution around ¹⁰⁰Sn

E.Clément

courtesy of R. Perez Vidal

Lifetime in n-rich O and C

S. Leoni, B. Fornal, M. Ciemala et al.,

Lifetime measurement in the non-yrast excited states of neutron rich C and O isotopes. Branching ratio and E2/M1 using the PARIS LaBr3 array

T. Otsuka PRL 105, 032501 (2010)

E.Clément

S. Leoni, B. Fornal, M. Ciemala et al.,

Shell evolution around ²⁰⁸Pb

E.Clément

D. Ralet et al., Phys.Scr. 92, 054004 (2017)

MUGAST campaign 2019

Nucleons transfer spectroscopy using the SPIRAL1 ISOL beams

Nuclear Astrophysics: spectroscopic factors of relevant resonances for nucleosynthesis studies in radiative capture reactions: (⁶Li,d), (³He,d), (d,p)

Shell evolution: spectroscopic factors, s.p. energies (d,p), (t,p), (³He,n) n-p pairing, clusterization

Lifetime measurement after single nucleon transfer

2018 call for proposal PAC meeting in November Start of the campaign in April 2019

Campaign manager : M. Assié (IPNO)

Double Gamma decay

D. Brugnara, A. Goasduff, JJ Vailente-Dobon et al.

500

600

The main point is to discriminate the real double gamma event candidates on top of the "background" of the Compton scattering.

"Tracking" should be able to reconstruct the Compton scattering and leave only candidate for the double events ... Proof of principle ?

After Tracking – OFT Std Prompt Track1+Track2 = 661 ± 1.5 keV, nbTrack=2 Compton Angle (Track1,Track2) Vs Diff (ETrack1, ETrack2)

Remain to be understood in details < 0.007% of events

 ^{137}Cs

E.Clément

100

200

300

400

Experiments performed in 2015-2018 at GANIL with AGATA

Search for Double Gamma decay in ¹³⁷Cs source

Reaction mechanism : Fission of Light Hg

¹³²Sn

Octupole – Quadrupole correlation in ¹¹²Xe Studies of excited states in ^{102,103}Sn

Evolution of collectivity around N=50: lifetime measurements ^{104,106}Sn

100**Sr**

Evolution of collectivity around N=50: lifetime measurements ⁹⁴Ru

Search for isoscalar pairing in the N=Z nucleus ⁸⁸Ru

Isospin Symmetry Breaking in the A=63,71 mirror nuclei Octupole correlation in ²⁰⁷Pb

Exploration of alpha-cluster : the unique case of 212 Po (208 Pb + α)

Shape transition in the neutron-rich W isotopes Transition Quadrupole Moments in ^{166,168}Dy.

 $i_{13/2}$ single particle state in ¹³³Sn and high spin in ¹⁰⁸Zr

Shape evolution in neutron rich fission fragments in the mass A~100 region

²⁰⁸Pb

Shell evolution around N=50: ⁸¹Ga spectroscopy

Evolution of collectivity around N=52: lifetime measurements in ^{83,84}Ge Evolution of collectivity around N=40: lifetime measurements in ^{73,75}Ga Evolution of collectivity around N=40: lifetime measurements in ⁶⁴Fe Evolution of the shell structure in the region of neutron-rich Ti isotopes Lifetime measurements of excited states in neutron-rich C and O isotopes

The lifetime of the 7.786 MeV state in ²³Mg as a probe for classical novae models

Conclusion

•AGATA is operated since 2014 at GANIL and 22 experiments have been performed

- 4 Papers published (2015-2016 data)
- 1 Submitted (2015 data)
- 5 Papers in preparation (2015, 2016 and 2017 data)
- 1Technical papers submitted
- 1Technical papers in preparation
- 16 Experiments under analysis (2016-2018)
- 3 PhD defended in 2017 and 7 in preparation using GANIL data

•The number of detectors is increasing and stability of the system is improved year after year

- Successful NEDA-DIAMANT-AGATA campaign in 2018
- Many results are coming all along the nuclear chart for many different physics topics
- Publications are important for GANIL and AGATA
- Many thanks to all AGATA collaborators !