

10 September 2018

New Developments of HPGe Detectors at ORTEC

Overview

ORTEC's special detectors reminder

- Standard and Segmented Clovers
- Double Sided Ge Strip detectors
- Special Point Contact

New Developments

- Large Diameter P-type semi-planar
- Mechanical cooling for Customized Solutions
- Summary

Advance Special Detector History

Advance Detector	First Unit built	Number of Units built	Application Examples
Gamma Sphere GaSp	Early 1990s 1990s	110+ 40	Nuclear Physics, beamlines
Clover Detectors	Mid 1990s	20+	Nuclear Physics, Health Physics
Point Contact (coaxial, semi-planar)	2009	50+	Neutrino and Dark Matter, High Resolution Spectrometry, Safeguards
PopTop/Encapsulated	Mid 1980s	Hundreds	Multi-detector (limited space) or multi- orientation, electro-mechanical coolers
Double Sided Strip Detectors	Early 2000	Several	Nuclear physics, Beamlines, Imaging, Medical
Shields, Low Background Hardware	1970s	Hundreds	Low count rate, Underground low background studies
Segmented	2000	Several	Spin Spectroscopy, Tracking, Doppler Shift
Arrays	Early 1990s	Several	Synchrotrons and beamlines, EXAFs

Clover Detector Systems

ORTEC[®]

IGRD Lawrence Livermore National Lab (LLNL)

- 41 side channel segments and 1 central channel
- 50 X 70 mm N-type detector with an extra 15mm at the back of crystal grounded to hold and cool the crystal
- Goal was minimization of the stray capacitance to each channel
 - Cryostat space requirement generous

GREAT CLOVER University of Manchester

- System modeled after EXOGAM
- 70 X 108 mm, included larger crystals

PT-6x2 to Liverpool

- 6 side channels and 2 center channels
- Retrofit "HEKO" preamplifiers onto the side channels as a solution to a problem the customer had where the outputs became noisy when all were connected simultaneously to the customer's 50ohm instrument
- Preamplifier retrofit

SEGA = PT-6x2

- 6 side channels and 2 center channels
- 65 X 80 mm, 76-Ge enriched detector
- The crystal was processed as the one above but with enriched Ge and loaded into a temporary cryostat as the customer intended to operate by dunking for the benefits of low mass mounting

Tracking 6x4 (TIGRE) to Liverpool

- 24 side channel and 1 center channel
- 65 X 82 mm with an extra 10mm (unadvertised) length at the back to be grounded to hold and cool

the detector

Double Sided Ge Strip Detector

ORTEC[®]

19th AGATA week and 3rd Position Sensitive Ge Detectors and Application Workshop/10 September 18

ANL MK1 through MK4 Argonne National Lab

- First crystal was square 87 X 87 X 20 mm, but with no guard ring. Later this crystal was upgraded and reduced to 14 X 14 channels to allow addition of the guard ring structure
- Second crystal was square 87 X 87 X 20 mm thick, with 16 X 16 channels plus guard ring
- MK2 and MK4 were upgrades to the original
- Sawed lithium

SMARTPETs for Liverpool

- Each with 12 X 12 channels plus guard ring on both sides
- 21 mm thick, required 99.2 mm starting diameter slice
- Guard ring fitted with preamp in at least one of the two systems
- Preamp and motherboard design in-house
- GG cryostats

PROSPECTUS Liverpool

- Delivered in 2010
- DSSD work for Liverpool 2 each new SMARTPET crystals
- Collaborate with customer for a new mount design to integrate with customer-designed cryostat for medical imaging

ORTEC

Coaxial Point Contact (Dark Matter)

ORTEC[®]

- Dark Matter experiments require coaxial (larger) crystal geometry and have
 - lower energy (<5keV detection) requirements than Majorana Demonstrator (few MeV)
 - Lower FWHM (pulse) requirement <100eV (Majorana's requirement was FWHM ~400eV for pulser)
- ORTEC completed a project for low-energy point-contact detectors with measured performance
 - $\circ~$ FWHM at 1.33 MeV 1.7 keV
 - Pulser 237 (requirement <= 300eV)
 - o P:C 75
 - \circ FW.1M/ FWHM 1.88
 - FW.02M/ FWHM 2.56
 - o Rel. Eff 56%
 - FWHM at 122 keV 513 eV
 - FWHM at 5.9 keV 273 eV

Continued improvements in low energy performance will be realized following the conclusion of ongoing development activities at Oak Ridge

Overview

ORTEC's special detectors reminder

- Standard and Segmented Clovers
- Double Sided Ge Strip detectors
- Special Point Contact

New Developments

- Large Diameter P-type semi-planar
- Mechanical cooling for PopTop and Encapsulated
- Summary

ORTEC[®]

Curie's MDA formula:

$$MDA(E) \sim \frac{\sqrt{B(E)}}{t * \mathbf{\mathcal{E}}(E)}$$

t = time (s) B(E) = background rate (cts/s) E (E) = efficiency E is energy in (keV)

Detector Efficiency

• <u>*Stable Thin Front Contact (STFC) Released in July 2014</u>

Technical paper presented at the IEEE NSS/MIC, November 2016 in Seattle, USA – Gregor G. Geurkov, Elaine. G. Roth, Kyle T. Schmitt, Timothy R. Twomey and Teresa Underwood "Improved Efficiency at Low Energies with P-Type High Purity Germanium Detectors".

- *STFC is a new thin contact for P-type detectors that improves low energy (<40keV) efficiency performance.
- *STFC is a stable contact, allowing warm storage of the HPGe detector for prolonged time (months/years) without losing efficiency performance from the front contact

ORTEC®

Larger Largest Diameter Semi-Planar HPGe

Efficiencies - Point Source 25cm away

ORTEC[®]

Efficiencies – 10cm diameter Filter paper

ORTEC[®]

Measured Performance of GEM-S10530

- Performance of GEM-S10530 detector in an ORTEC PopTop cryostat
- FWHM at 1.33 MeV, 122 keV, and 5.9 keV
- Measurements made at different shaping times with analog and digital electronics
- Premium resolution achieved at various shaping times and energies

FW	/HM in eV @	D	With a Liquid Nitrogen Cryostat								
1332 keV	122 keV	5.9 keV	Peak-to- Compton	FW.1M/ FWHM	FW.02M/ FWHM	Relative Eff.	Shaping Time	Peaking Time			
1850	597	403	67.5	1.95	2.85	86.2	6				
1700	616	442	76.7	1.88	2.55	86.3	10				
1650	598	400	76.9	1.91	2.92	88.4		12			
1720	592	410	74.6	1.87	2.80	88.1		20			
2000	700	550	65	2.00	2.90	80	Publishe	d specs			

ORTEC®

Measure GEM-S10530 Performance/Cooling Methods ORTEC®

FWHM @ different energies and cooling methods

FWHM in keV @ 1332 MeV energy	FWHM in eV @ 122 keV energy	FWHM in eV @ 5.9 keV energy	Peak-to- Compton	FW.1M / FWHM	FW.02M / FWHM	Relative Eff.	Shaping Time	Peaking Time	Cooling
1.85	597	403	67.5	1.95	2.85	86.2	6		Liquid Nitrogen
1.96	620	433	64.3	1.95	2.94	85.6	6		X-Cooler
1.87	631	456	66.6	1.96	2.82	85.5	6		ICS-P4
1.70	616	442	76.7	1.88	2.55	86.3	10		Liquid Nitrogen
1.78	648	469	75.1	1.82	2.45	85.9	10		X-Cooler
1.71	656	491	75.4	1.87	2.48	85.4	10		ICS-P4
1.65	598	400	76.9	1.91	2.92	88.4		12	Liquid Nitrogen
1.72	592	410	74.6	1.87	2.80	88.1		20	Liquid Nitrogen
1.68	603	421	75.9	1.90	2.89	88.2		20	Mobius On
1.68	598	410	75.5	1.92	2.91	88.0		20	Mobius Off

19th AGATA week and 3rd Position Sensitive Ge Detectors and Application Workshop/10 September 18

Profile S Models and Specs

Profile Model		Crystal Dimension		Energy Resolution (FWHM)			Peak Shape			Nominal	
		Actual Diamete r (+0/–2 mm)	Actual Length Minimum	5.9 keV Warr. (eV)	@122 keV Warr. (eV)	@1.33 MeV Warr. (keV)	FW.1M/ FWHM Typical	FW.02M / FWHM Typical	P:C Warr.	Relative Efficiency %	Endcap Dia. (mm)
	GEM-S5020P4	50	20	350	650	1.8	1.90	2.55	35	7	70
ries	GEM-S5825P4	58	25	400	650	1.8	1.90	2.65	35	15	70
	GEM-S7025P4	70	25	450	650	1.9	1.95	2.75	40	20	83
	GEM-S7030P4	70	30	450	700	1.9	2.00	2.90	40	28	83
S-se	GEM-S8530P4	85	30	500	700	1.9	2.00	2.90	55	50	108
	GEM-S9430P4	94	30	500	700	1.9	2.00	2.90	65	65	108
	GEM-S10530P4	105	30	550	700	2.0	2.00	2.90	65	80	121
	GEM-S10535P4	105	35	550	700	2.0	2.00	2.90	65	90	121

• performance advantage • performance matches competition • performance disadvantage over competition

Advantages in:

- Resolution
- Peak to Compton
- Peak Shape
- Endcap Diameter

Observations:

- Better resolution and Peak-to-Compton is important in improving MDA performance.

ORTEC[®]

Curie's MDA formula:

$$MDA(E) \sim \frac{\sqrt{B(E)}}{t * \mathcal{E}(E)}$$

```
t = time (s)

B(E) = background rate (cts/s)

ε (E) = efficiency

E is energy in (keV)
```

Note: B(E) is indirectly proportional to detector resolution

Profile SP with LNBC

- System resolution = $\sqrt{R(d)^2 + R(E)^2}$
- Where R(d) is the detector resolution and R(E) is the electronic resolution
- To a very good approximation R(d) (in keV) = $1.35\sqrt{E(in MeV)}$
- R(E) depends on the capacitance on the capacitance of the detector
 - · Capacitance depends on the surface area of the contact

- <u>Low Noise Back Contact (LNBC) Released in July 2015</u>
 - Low Noise Back Contact (LNBC) presented at the IEEE NSS/MIC, November 2016 in Strasbourg, France Gregor G. Geurkov, Elaine. G. Roth, Kyle T. Schmitt, and Teresa Underwood
 "Profile SP (P-type) HPGe detectors – premium resolution at low to medium energies".
- LNBC is a new proprietary contact for P-type detectors that improves low to medium energy (<700 keV) resolution performance.

Largest Diameter with Premium FWHM

ORTEC[®]

Measure GEM-SP9430 Performance/Cooling Methods ORTEC®

FWHM @ different energies with LN2 and Mobius

FWHM in keV @ 1332 keV energy	FWHM in eV @ 122 keV energy	FWHM in eV @ 5.9 keV energy	Peak-to- Compto n	FW.1M/ FWHM	FW.02M/ FWHM	Relative Eff.	Shaping Time	Cooling
1.71	564	344	71.1	1.87	2.51	65.2	6	Liquid Nitrogen
1.77	593	348	68.0	1.93	2.91	69.4	6	Mobius On
	557	322					6	Mobius Off
1.66	577	364	72.7	1.85	2.49	63.6	10	Liquid Nitrogen
1.90	630	425	65	2.00	2.90	65	Publis	hed Specs

19th AGATA week and 3rd Position Sensitive Ge Detectors and Application Workshop/10 September 18

Profile SP Models and Specs

Profile Model		Crystal Dimension		Energy Resolution (FWHM)			Peak Shape			Nominal	
		Actual Diamete r (+0/–2 mm)	Actual Length Minimum	5.9 keV Warr. (eV)	@122 keV Warr. (eV)	@1.33 MeV Warr. (keV)	FW.1M/ FWHM Typical	FW.02M / FWHM Typical	P:C Warr.	Relative Efficiency %	Endcap Dia. (mm)
Se	GEM-SP5020P4	50	20	300	585	1.8	1.90	2.55	35	7	70
	GEM-SP5825P4	58	25	340	585	1.8	1.90	2.65	35	15	70
-seri	GEM-SP7025P4	70	25	380	585	1.8	1.95	2.75	40	20	83
S S	GEM-SP8530P4	85	30	400	630	1.9	2.00	2.90	55	50	108
	GEM-SP9430P4	94	30	425	630	1.9	2.00	2.90	65	65	108

● - performance advantage ● - performance matches competition ● - performance disadvantage over competition

Advantages in:

- Resolution
- Peak to Compton
- Peak Shape
- Endcap Diameter

Observations:

 Better resolution and Peak-to-Compton is important in improving MDA performance.

ORTEC's Mechanical Cooling History

ORTEC has been manufacturing mechanical coolers since mid '70s

URTEC[®]

- Old generations coolers
 - Solvay (mid 70s) and Joule Thompson (early 90s) technologies
 - Klemenko cycle (X-cooler I,II,III since 2004).
- New generation coolers
 - Stirling (Detective family since 2004).
 - Stirling (LDM/Mobius/ICS since 2010/2013/2014 correspondingly)
- ORTEC is the only detector manufacturer that is vertically integrated in non-LN₂ cooling
 - ORTEC purchased Sunpower in 2013
 - Stirling coolers are:
 - More efficient than other technologies
 - More reliable (longer MTTF) than other technologies
 - Smaller foot-print (one box design)
 - Same microphonic noise performance as Pulse-Tube
 - Control over quality and cooler developments

ICS[®] Integrated Cryocooling System

ORTEC[®]

Superior electro-mechanical cooling system for HPGe detectors

Key Drivers

 Premium, LN₂ like resolution performance without using LN₂, with improved operational ease-of-use, application flexibility, and superior system uptime

Technology / Product Implementation and Solution

- Delivers LN₂ like resolution for a variety of HPGe detector models
- Fully integrated Sunpower Stirling cryocooler incorporates Active Vibration Cancellation technology and provides excellent cooler MTTF
- Vacuum hardened cryostat for superior vacuum integrity and no thermal cycling
- Ultra-quite design in a small, compact, single unit footprint provides installation flexibility

Key Differences From Vacuum Hardened version

- Conventional cryostat
- Field Upgradable
- Higher power consumption
- Lower weight

Mechanical cooling for Customized Solutions

90-degree angle ICS **Complete system designs with** configuration with any size/type MCA and software detector Multi-Detector "Hydra" designs **Special Detectors**

ORTEC offers unique cooling solutions to meet and design requirements

ORTEC[®]

- ORTEC re-ignited and continues to focus on special and custom detector market to service Research and Education Community with customized solutions
- Recent developments
 - Segmentation
 - Electro-Mechanical cooling for custom and special systems
 - Largest diameter detectors (paper will be published at IEEE 2019)
- Any questions?

Contact –

- Local sales agent / distributor
- Director of Detector Technology Elaine Roth (Elaine. Roth@ametek.com)

