R&D on Novel Ge-detector Geometries for Ultimate Position Resolution and Efficiency

J. Gerl GSI Darmstadt, Germany

presented at

PSeGe Workshop September 10, 2018 Strasbourg, France

Basic Element: Semi-planar Ge Detector

Non-segmented p-type HPGe crystal Volume: 33.2x33.2x15.5 mm³ Carrier concentration 3.3x10⁹ atom/cm³

Crystal processed by SEMIKON FZ-Jülich

Amorphous Ge (aGe) blocking contact Negligible dead zone!

Test Set-up

Crystal and pre-amp for installation in POPTOP assembly

Test Results

SEMIKON: AC-Coupling; 480V, 3nA; 2.59 keV @ 59.6 keV ²⁴¹Am GSI: DC-Coupling; 160V, 1.2 pA

Test Results

Test Results

Shaping time (µs)	3	6
Energy (keV)	122	122
FWHM (keV)	2.13(1)	2.35(1)
Energy (keV)	1332	1332
FWHM (keV)	4.53(1)	4.32(1)

Next steps

- Investigate different coupling and read-out
- Scan the detector to obtain position dependent pulse shapes
- Determine from pulse shapes the field distribution and compare with simulations
- Decide on the segmentation scheme:

Cross talk with planar Ge strip detectors

	2 cm	Canberra EPGS type -1900 V			
		DC side		AC side	
	Strip	FWHM	Centroid	FWHM	Centroid
	1	(keV)	(keV)	(keV)	(keV)
	1	2.40	1332.58	2.49	1332.81
6 cm	2	2.51	1332.54	2.29	1332.58
	3	2.76	1332.7	2.29	1332.56
6 cm	4	2.72	1332.26	2.35	1332.56
	5	2.68	1332.24	2.36	1332.5
	6	2.70	1332.39	2.36	1332.55
	7	2.69	1332.45	2.33	1332.54
	8	2.69	1332.68	2.33	1332.64
	9	2.54	1332.38	2.29	1332.58
In collaboration with	10	2.44	1332.44	2.42	1332.55
TIFR Mumbai, India		1		11	

Cross talk with planar Ge strip detectors

Counts

Signal amplitude depends on strip multiplicity

-> Cross talk

Linear correction (as for AGATA)!

 $\delta_{i,j} = \frac{E_{i,j}}{E_{\gamma}}$

9

Cross talk correction

Cross talk correction

The linear correction seems to overcompensate the cross talk An additional damping offset optimizes the correction

Cross talk correction

Analysis of the offset shows dependence on Compton energy distribution

Cross talk conclusions

- Planar Ge strip detectors show pronounced cross talk effects similar to segmented AGATA detectors
- Sum energies of events with multiplity 2 to 4 events can be recovered with linear correction coefficients
- Additional non-linear (energy-dependent) components are observed
- Further improvement of the energy resolution of higher multiplicity events is achieved by damping the correction coefficients with offset parameters