

La physique du quark top dans CMS comme sonde vers la nouvelle physique

Large Hadron Collider

Eric Chabert, séminaire LPC

CMS: Compact Muon Solenoïd

Top: une place à part dans le modèle standart

Découverte: 1995 @ Tevatron (CDF/D0) Temps de vie: ~ 5 $10^{-25}s << \lambda^{-1}_{QCD}$

Masse: 172.4 ± 1.2 GeV

✓ Complète le secteur des quarks
 ✓ Se désintègre avant hadronisation
 ✓ La particule élémentaire la plus massive
 ✓ Fort couplage au boson de Higgs (λ_t ≈ 1)
 ⇒ Rôle important dans EWSB
 ⇒ Sensible à la nouvelle physique ...

Production

Production:

Modèle Standard

Nouvelle Physique

- * paire de top
 * single top (3 canaux)
 * production associée (ttZ,ttW)
- * résonance tt (ex: H, Z' ...)
- * désintégration en "top+X" (ex: stop, $H^{\pm -}$)

ttH etc ...

LHC: une usine à top

Tevatron: σ_{tt} ~7 pb (L=4 fb⁻¹ – 28k paires tt)

LHC: $\sigma_{tt} = 908 \text{ pb}$

(NLO, CTEQ6.5, m(top)=171 GeV, @ 14 TeV)

 \rightarrow nominalement 9 millions de paires/an

 \rightarrow erreurs statistiques faibles ..

 \rightarrow nouvelles possibilités:

corrélation de spin, nouvelle physique ...

• Pour le démarrage (fin 2009) @10TeV

 σ_{tt} = 414 pb L=100 pb⁻¹ 40k de paires tt

Désintégrations

Eric Chabert, séminaire LPC

Des évènements complexes

- Tous les sous-déctecteurs sont impliqués
- Au moins 6 particules dans l'état final: électrons/muons, jets (b-tagging), MET
- Présence de jets additionnels issus des radiations: 66% des evts au moins 1 extra-jet avec Pt>20 GeV ISR/FSR
- Chevauchement des jets émis lorsque les partons sont émis des directions proche l'un de l'autre

Évènement tt→bµvbqq dans CMS

La physique du quark top

Les bruits de fonds

@ 14 TeV

Bruits de fond physique:

- QCD (faux électrons ou muon dans jets) σ =5.7x10¹⁰ pb
- · W + jets (même signature à haute multiplicité) σ =4.1x10⁴ pb (W- λ v)
- · Z + jets (contrainte sur un 2nd lepton isolé) σ =3.6x10³ pb (Z-)l)
- * $tt_{\rm leptonique}$, $tt_{\rm hadronique}$
- Single top σ =323 pb
- · Di-bosons (WW,ZZ,WZ) $\sigma~$ ~10 pb
- ≻ ...
- Choix d'un chemin de déclenchement pour réduire le volume des données à analyser
- Adapter la sélection des évènements
- Nécessité de estimer le bruit de fond à partir des données: QCD & W+j

Séléction des évènements

<u>Jets</u>:

SisCone CaloJet calibrés L2L3

- · au moins 4 jets
- P₁>30 GeV (40 GeV)
- · |η|<2.4
- · nettoyage de la collection
- · B-tagging dans certaines analyses

Ordres de grandeurs:

- •ε~5à20%
- S/B ~2 à 20 ..
- \cdot Contamination QCD ~ 1-10 %
- · Contamination W+j ~ 5-20%

Muons:

Global muon :

trajectographe interne + chambres à muons $\cdot P_{\star}$ >30 GeV

- $\cdot |\eta| < 2.1$ (système de déclenchement)
- Coupure de qualité (χ^2 ,# hits, d0 ...)
- Isolation
- · ΔR(μ,jet)>0.3

Electrons:

GSF électron (super-amas+GSF trace)

- $\cdot P_t$ >30 GeV
- \cdot | η |<2.4 (trajectographe)
- · Electron-ID

Isolation

Isolation: TrackIso, CaloIso, Combinés, Absolue/Relative ..

Révision de la sélection pour 10 TeV en cours ... moins de contamination QCD *a priori* !

Estimation des bruits de fond

Estimation du bruit de fond QCD avec la méthode ABCD

Pour 10 pb-1

	$H_T < 300 GeV$	$H_T > 300 \ GeV$
TrackIso > 2 GeV/c	2666 ± 52	197 ± 14
TrackIso < 2 GeV/c	747 ± 27	51 ± 7
		Estimation : 55 ± 5

Principe:

- · Choisir 2 variables aussi
- décorrélées que possible X & Y
- · Région A: bruit de fond dominant
- Région D:signal dominant

$$\cdot N_{D} = N_{B} N_{C} N_{A}$$

Variables utilisées:

- \cdot H_T= Σ P_t (jets>30 GeV)
- · TrackIso = ΣP_{t} (traces $\Delta R < 0.3$)

$$\cdot \Delta \mathsf{R} = (\Delta \eta^2 + \Delta \Phi^2)^{1/2}$$

W+j & Z+j: ajustement de templates MC

Principe:

Utiliser la forme des distributions MC d'une variable pour le signal & le BDF (*template*)
Ajustement les amplitudes des distributions avec les données

> Variable: M3 = max(Σvec(Pt_(3 jets))) BDF: W+j & Z+j ont la même forme

 $\begin{array}{c} \mbox{Précision: 20\% avec 10 } pb^{\mbox{-}1} \\ 10\% \ avec \ 50 \ pb^{\mbox{-}1} \end{array}$

Reconstruction des jets

* à haute multiplicité
* à haut Pt_(top)
* an fanation de M

* en fonction de M_{tt}

Idée:

diminuer l'ouverture angulaire pour diminuer le chevauchement des jets

Calibration des jets

Objectif: remonter à l'énergie du parton initial

Approche de factorisation utilisée dans CMS:

- Offset: correction pour le pile-up & le bruit de l'electronique
- Relative (η): correction pour les variations de la réponse des jets avec η relativement à une région de controle
- Absolute (p_T): correction au niveau des particles en fonction du p_T du jet
- EMF: correction pour les variations avec la fraction électromagnétique de l'énergie
- Flavor: correction au niveau des particles pour différentes saveur: (l-quark, c, b, gluon)
- UE:correct ion pour l'évènement sous-jacent
- Parton: correction au niveau partonique
- Evènements top: correction 1+2+3+5+7

13/03/2009

Reconstruction des évènements

Une reconstruction complète ou partielle de l'évènement est nécessaire dans de nombreuses analyses:

masse du top, corrélation de spin, distribution M_{tt} ...

Objectifs:

- reconstruire le p_z du neutrino
- choisir une collection & combinaison de jets : 12/4 jets

Moyens:

- contraintes sur les masses des W et top
- utilisation de l'étiquetage des b-jets

Varieté des méthodes pour:

· reconstruction du $P_z(v)$: $M_{1v} = M_w$ (différents traitements) ou ajustement cinématique

[•] appariemment des jets (*cf slide suivant*)

Appariement des jets

Méthodes couramment utilisées:

- · Méthode séquentielles avec contraintes sur les masses (W,t)
- → sensible à la JES
- \cdot Minimisation globale d'un $\chi^{\scriptscriptstyle 2}$
- Utilisation de LR/NN
- → plus difficilement contrôlable au démarrage

Variantes:

· Choix d'une collection de jets en entrée \rightarrow par défaut 4 jets de plus haut Et

 Utilisation du b-tagging → augmente significativement la pureté mais peu fiable au démarrage

Difficultés:

- · Extra-radiations: ISR/FSR ...
- · Acceptance $|\eta| \& P_t$
- \cdot Chevauchement des jets
- · Evènement sous-jacent

Ajustement cinématique

- Méthode des multiplicateurs de Lagrange
- Contraintes non linéaires → extension de Taylor→ processus itératif

Utiliser dans de nombreuses analyses:

· reconstruction partielle: reconstruction d'un W/top hadronique

 \cdot reconstruction complète: distribution M_{tt}

Calibration

Estimation de la JES

- Canal semi-leptonique :
 - Utiliser la branche leptonique pour sélectionner l'évènement
 - Utiliser la branche hadronique pour estimer les facteurs de calibration des jets (l-quarks & b)
- Branche hadronique: 2 contraintes sur les masses:
 - m_w = 80.399 ± 0.025 GeV/c² (precision: 0.03%)
 - m_{top} = 172.4 ± 1.2 GeV/c² (precision: 0.7%)
- Appliquer un ajustement cinénatique sur l'évènement et estimer l'échelle en énergie des jets

13/03/2009

Eric Chabert, séminaire LPC

q

q

Estimation du b-tagging

L'efficacité de b-tagging peut etre mesuré avec une précision de 4% dans le tonneau et de 5% dans les bouchons avec 1/fb

Quelques résultats

Mesure de section efficace:

leptonique $\Delta \sigma / \sigma (10 \text{ fb}^{-1}) = 0.9\% (\text{stat}) + 11\% (\text{syst}) + 5\% (\text{lumi})$ semi-leptonique $\Delta \sigma / \sigma (10 \text{ fb}^{-1}) = 0.4\% (\text{stat}) + 10\% (\text{syst}) + 5\% (\text{lumi})$ hadronique $\Delta \sigma / \sigma (10 \text{ fb}^{-1}) = 3\% (\text{stat}) + 20\% (\text{syst}) + 5\% (\text{lumi})$

<u>Mesure de masse du top:</u>

leptonique	ΔM (L=10 fb ⁻¹)= 0.5 (stat) + 1.1 (syst) GeV
semi-leptonique	ΔM (L=10 fb ⁻¹)= 0.2 (stat) + 1.1 (syst) GeV
hadronique	ΔM (L=10 fb ⁻¹) = 0.6 (stat) + 4.2 (syst) GeV
<mark>méthode</mark> J/Ұ	ΔM (L=10 fb ⁻¹) = 1.0 (stat) + 1.5 (syst) GeV

2006 @ 14 TeV

Nouvelle physique

Utilisation du quark top pour sonder vers la nouvelle physique ...

13/03/2009

Eric Chabert, séminaire LPC

Nouvelle physique

Le quark top joue un rôle particulier dans de nombreux modèles de nouvelle physique du à sa masse.

Generic categories of models:

1-Weakly coupled models at the TeV scale

Introduce new particles to cancel SM "divergences" symmetries->partners / top partners <2 TeV Examples: SUSY, Little Higgs ... Resonances: top parters, new scalars/vectors possibly strongly coupled with top

2-Strongly coupled models at the TeV scale:

New strong dynamics enters at ~1TeV – top often play a leading role New Non-abelian group (as QCD) - Higgs is composite - new (techni-) particles Examples: Technicolor, Topcolor, Top see-saw... Resonances: ttbar bound states, colorons ...

3-New space-time structure:

Introduce extra space dimensions to lower the Planck scale cutoff to 1 TeV. Examples: ADD,RS... Resonances: KK-excitations including gravitons

c'est donc une sonde idéale pour rechercher de la nouvelle physique !

13/03/2009

Eric Chabert, séminaire LPC

Les résonances tt

$$pp \rightarrow X \rightarrow tt$$
 $m_{(X)} > 2 \times m_{top}$

Pas de résonances tt prédites dans le modèle standard (Higgs exclu)

Résonances tt

Une expression générique ...

- · Diversité des modèles
- Diversité des particules: Higgs,Z', axi-gluons, gravitons ...
 Diversité de leur propriétés parité, masse, couplage ...

- TopColor (nouvelle dynamique)
- \Rightarrow topColor assisted technicolor, top see-saw ..
- TopFlavor (groupe SU(2) séparé pour 3^e generation)
- Randall Sundrum & ADD (extra-dimensions)
- SUSY

	Spin	Color	(Ι,γ ₅) [L,R]	SM-interf	Example
		0	(1,0)	no	Scalar
0	0	(0,1)	no	PseudoScalar	
	0	(0,1)	yes	Boso-phobic	
		8	(0,1),(1,0)	no	Techni-pi0[8]
		0	[sm,sm]	yes/no	Z'
1	0	(1,0),(0,1)(1,1),(1,-1)	yes	vector	
	8	(1.0)	yes	coloron/kk-gluon	
		8	(0,1)	"yes"	axigluon
	2	0		yes	kk-graviton

Objectif: approche modèle-indépendant

13/03/2009

Eric Chabert, séminaire LPC

Résonances tt

Eric Chabert, séminaire LPC

M_{ttbar} est une des variables les plus affectées par la présence de telles résonances.

D'autres distributions telles que HT, Pt (top), $\theta(l,b)$... le seront aussi.

Pourquoi M_{ttbar} ?_

• donne directement la masse de la résonance

 dans le cas d'une résonance étroite, le signal de nouvelle physique peut être contenu dans une région restreinte ce qui augmente la significance.

Les limites actuelles du Tevatron (1.96 TeV):

- Pas d'excès trouvé

-Limites sur un $\,$ Z' leptophobique avec $\sigma_{z'}$ =0.012 $M_{z'}$

-dans le modèle topcolor assisted technicolor:

- DO: m_{z'}>760 GeV @ 2.1 fb⁻¹
- CDF: m_{z'}>720 GeV @ 1 fb⁻¹

Limitation:

- $E_{CM} \Rightarrow$ pas d' evts avec $M_{ttbar} \ge 1 \text{ TeV}$
- Statistique ≈ 10³ evts

@ LHC peut rechercher à des masses plus élevées (\approx 5 Tev)

Avec une statistique des ordre de grandeur plus grande ($\approx 10^4$ events/fb⁻¹)

Distribution Mtt

Topologie à haute masse

Mode de production	n Pourcentage d'évènements où		• Les angles entre les produits de
	$\Delta R_{q,ar{q}}{<}0.5$	$\Delta R_{q,ar{q}}{<}1.0$	Les angles entre les produits de
$t\bar{t}$ Modèle Standard	1.6 ± 0.4	14.8 ± 0.1	désintégration 🎽 avec $\mathbf{M}_{t \ \overline{t}}$
Z' 1 TeV/ c^2	12.5 ± 0.3	48.5 ± 0.5	
$Z' 2 TeV/c^2$	38.9 ± 0.6	73.2 ± 0.5	
Z' 3 TeV/ c^2	54.9 ± 0.6	82.0 ± 0.5	\Rightarrow Difficulté à reconstruire les
$Z' 4 TeV/c^2$	62.7 ± 0.6	85.1 ± 0.5	

- gration \blacktriangle avec $M_{t, \bar{t}}$ ulté à reconstruire les jets
- \Rightarrow Le critère d'isolation des leptons échoue

13/03/2009

Eric Chabert, séminaire LPC

3500

Stratégie

Evolution en fonction de M_{tt} ...

- · topologie & bruits de fond
- · déclenchement & sélection & reconstruction à adapter

Ajustement cinématique

Distribution Mtt

Pour 1 fb⁻¹ - Avec ajustement cinématique

13/03/2009

Eric Chabert, séminaire LPC

Z': sensibilité

Sensibilité

- la décroissance du bruit de fond
- l'efficacité de sélection/reconstruction
- Amélioration avec ajustement cinématique
- Erreur systématique dominante: MisAlca

Top tagging

Principe:

A haut Pt (ou haute Mtt), les quarks top apparaissent principalement comme un seul jet

Jet:

Cambridge Algorithm $\Delta R=0.8$ Recherche de sous-amas: 3 (min SubJet Pt)

Top tagging

Recherche de résonances:

· di-jets (canal hadronique)
· semi-leptonique: 1 lepton+ 1 jet + 1 top-jet analyses en cours

SUSY

Le quark top peut être produit dans la chaîne de désintégration de particules supersymétriques: stop \rightarrow top+ neutralino + ...

· Présence de grande MET (neutralinos)

• Présence de leptons

recherche inclusive avec des quarks top

SUSY

Recherche de SUSY inclusive avec des quarks top. (Modèle mSugra)

Sélection:

- · HLT: 1jet+MET
- · au moins 4 jets Et>30 GeV & $|\eta|$ <2.5
- · au moins 1 b-jet
- ·1 muon isolé Pt>5GeV & |η|<2.5
- · MET>150 GeV

Reconstruction:

- ajustement cinématique (W,top hadronique)
- P(χ2)>0.1
- · $\Delta \Phi$ (top,MET)<2.6

13/03/2009

SUSY ...

Sélection des évènements:

tt – semi-leptonique \rightarrow même échantillon que pour les analyses MS (σ ,m_{top})

Reconstruction: contrainte sur un top hadronique: 3 jets \rightarrow sonde

Bruits de fonds:

- Estimation des bruits de fonds QCD V+j à partir des données
- · Estimation du bruit de fond single top & di-bosons à partir du MC
- · Estimation de la composante ttbar à partir des données !

Recherche:

Définitions d'observables sensibles à la présence de SUSY Combinasons de ces variables pour maximiser la sensibilité à la nouvelle physique

Analyse:

analyse en cours, démarrage au niveau générateur (MadGraph)

Boson de Higgs chargé

- · déclenchement sur e/µ
- 3 jets Et>40 GeV
- 1 b-jet
- 1 τ candidate: Et>20 GeV, E_{HCAL} >2GeV, isolation charge opposée à celle du lepton

Systematiques dominantes:

B-tagging, τ -tagging, JES...

La production de boson de Higgs chargé dépend de sa masse:

ightarrow m_{top} gg—tbH

 $ightarrow \mathbf{m}_{H^{\pm}} < \mathbf{m}_{top} \ tt \rightarrow HWbb$

 $H \pm \rightarrow \tau^{\pm} \nu BR \approx 98\%$ (for tan $\beta > 10$)

13/03/2009

P-TDR vol 2

Activités @ IIHE

Groupe:

- 4 doctorants
- 1 étudiant Master
- 4 nouveaux doctorants en septembre

Activités courantes:

- · étude comparative des jets
- · sélection des jets
- · appariemment des jets

→ Création d'une nouvelle thématique:

Recherche de nouvelle physique:

- · Recherche de Z' à basse masse
- · Test de consistence du Modèle Standard
- · Rechercher inclusive de SUSY avec des quarks top

Extensions possibles:

- Evènements à 4 tops
- Higgs chargé

Un long chemin

- Préparation aux futures prises de données
- Installation détecteurs Tests cosmiques
- Production Monte Carlo à 10 TeV
- Amélioration des outils (reconstruction, software ...)
- Mise en place de stratégies

[•] Premières collisions en septembre prochain ??

· Commissiong:

- · Phase d'alignement/calibration du détecteur
- · Estimation des efficacités de déclenchements etc

[•] Physique du top au démarrage:

• Estimation des bruits de fond Mesure de section efficace / masse du top ...

· Recherche de nouvelle physique

- · Extensions des limites du Tevatron
- \cdot Des signatures les plus simples (Z' à basse masse) ... aux plus complexes

Découverte?

- · Différentes méthodes ... (Xcheck ATLAS/CMS)
- · Recherche dans d'autres canaux .. couplage
- Propriétés de la particules: spin ...
- Remonter à un modèle et à ses paramètres 13/03/2009 Eric Chabert, séminaire LPC

HLT

Perpectives pour 2009

Juillet: fin du refroidissement Juillet-Aout: Commisionning Septembre-Décembre: Collisions @ 10 TeV - L=1032 cm2s-1 – L = 100 pb ?!

ECAL en magenta. HCAL en bleu. tracker et signaux muon en vert 13/03/2009 Eric Chabert, séminaire LPC

CCMS every every

JES estimation

• To identify the correct jet combination four observables are combined into a LR:

JES estimation

- For each event we have an estimate of the JES corrections, $\Delta E_{b,i}$ and $\Delta E_{l,i}$ (i=event)
- Events for which $\Delta E_{b,i}$ or $\Delta E_{l,i} > \pm 20\%$ w.r.t first estimate are removed:
- The relative difference between the fitted expectation value of the m_w distribution and M_w^{world} is taken as a first estimate for light jets: ΔE_{I,incl.}
- → Difference between MC expectation values of light and b JES corrections (7%) is used to obtain the first estimate for b jets $\Delta E_{b,incl.}$ from $\Delta E_{l,incl.}$
- The $P^{fit}(\chi^2 | \Delta E_b, \Delta E_l)$ -values of the remaining events are translated into χ^2 -values

- Performance of method depends on Δm_t from Tevatron

