

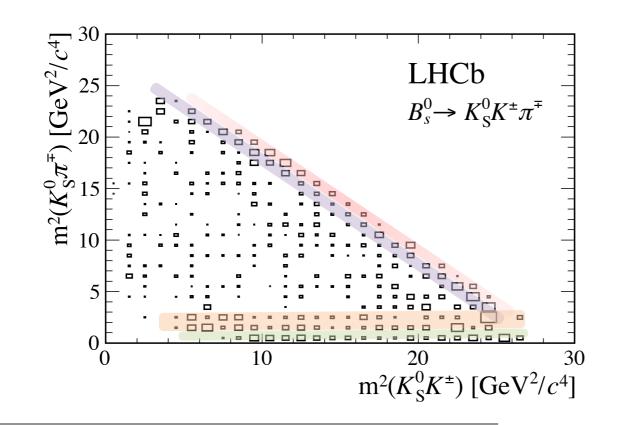
Amplitude analysis of $B^{0}_{s} \rightarrow K^{0}_{S}K^{\pm}\pi^{\mp}$ decays

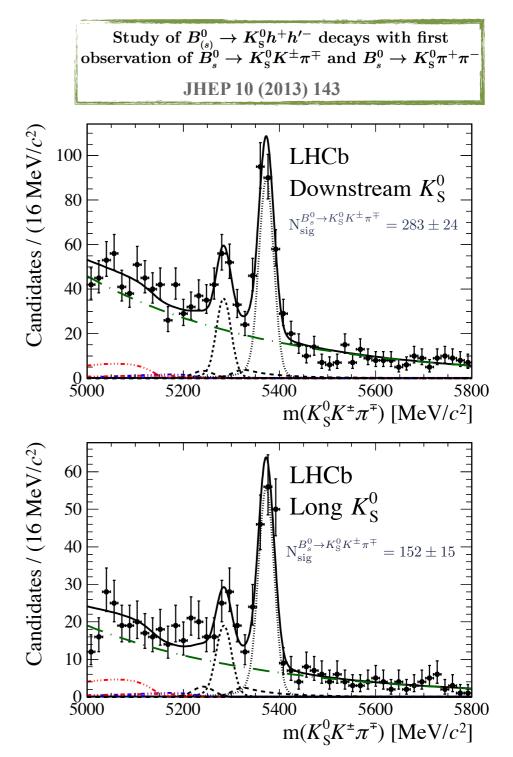
T. Gershon^[1], T. Latham^[1] and <u>R. Silva Coutinho^[2]</u>

[1] University of Warwick[2] Universität Zürich

June 6th, 2018, Paris

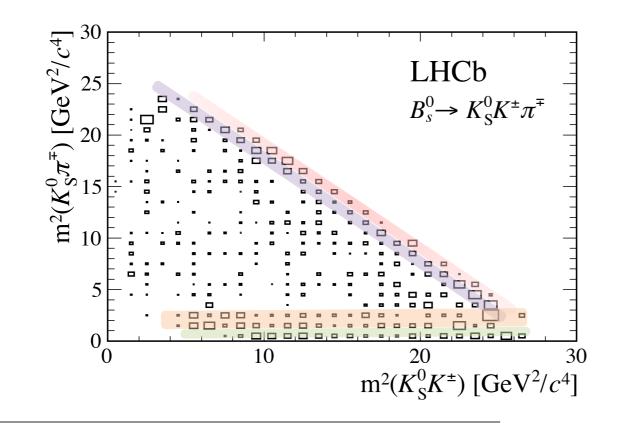
Workshop on multi-body charmless b-hadron decays

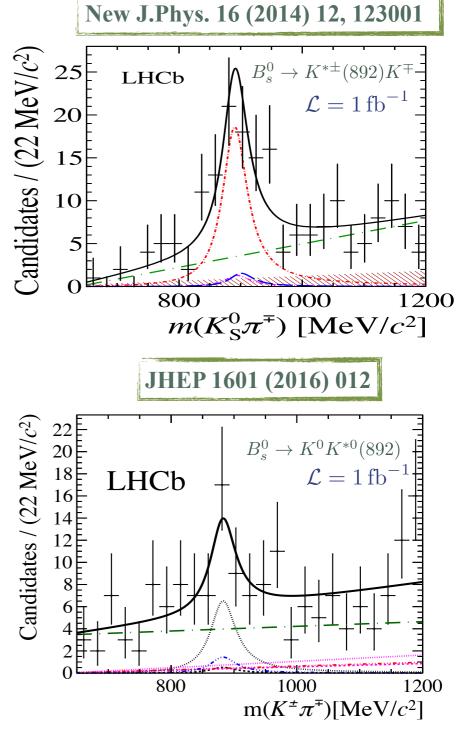




Search for $\mathcal{O}P$ in charmless 3-body decays of neutral *B* mesons to final states containing a K⁰ meson

- CKM angle γ using $B_{s}^{0} \rightarrow K^{*}K$ in an isospin analysis
- Non-zero $\Delta\Gamma_S$ allows effective lifetime measurement
- U-spin multiplet $B^{0}_{s} \rightarrow K^{*0}K^{0}(K^{*0}K^{0})$ to $B^{0} \rightarrow K^{*}K$

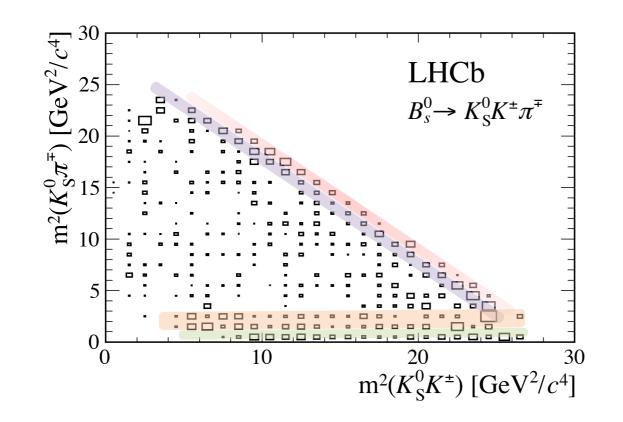


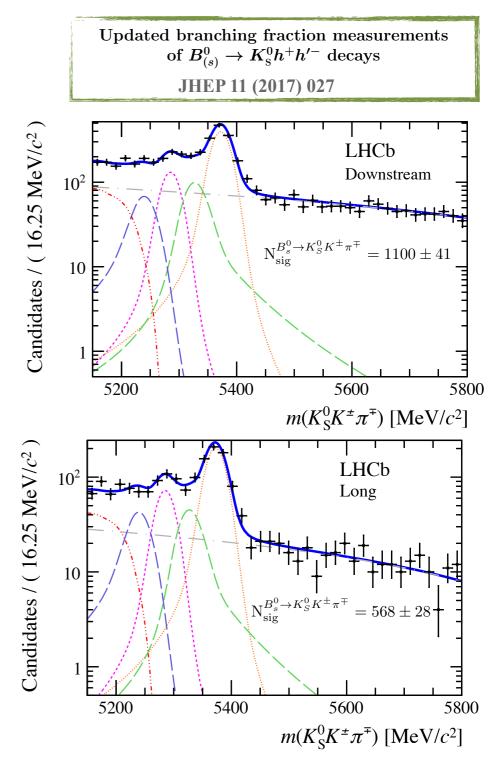

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

Universität Zürich^{uzH}

Search for $\mathcal{O}P$ in charmless 3-body decays of neutral *B* mesons to final states containing a K⁰ meson

- CKM angle γ using $B_s^0 \rightarrow K^*K$ in an isospin analysis
- Non-zero $\Delta\Gamma_S$ allows effective lifetime measurement
- U-spin multiplet $B^{0}_{s} \rightarrow K^{*0}K^{0}(K^{*0}K^{0})$ to $B^{0} \rightarrow K^{*}K$





Universität Zürich^{UZH}

Search for $\mathcal{O}P$ in charmless 3-body decays of neutral *B* mesons to final states containing a K⁰ meson

- CKM angle γ using $B_{s}^{0} \rightarrow K^{*}K$ in an isospin analysis
- Non-zero $\Delta\Gamma_S$ allows effective lifetime measurement
- U-spin multiplet $B^{0}_{s} \rightarrow K^{*0}K^{0}(K^{*0}K^{0})$ to $B^{0} \rightarrow K^{*}K$

This talk covers some aspects of the first Dalitz analysis of $B^{0}_{s} \rightarrow K^{0}_{S}K^{\pm}\pi^{\mp}$ decays

- "Effective" untagged time-integrated Dalitz-Plot analysis strategy has been used
 [limited statistics for flavour tagging]
- Dataset selection, efficiency and background modelling common to all K⁰_Sh⁺h⁻ modes [optimised FoM for DP analysis]
- Dalitz-plot fitting results and systematics
 [BR measurements and first observations of the Kπ S-wave contribution]

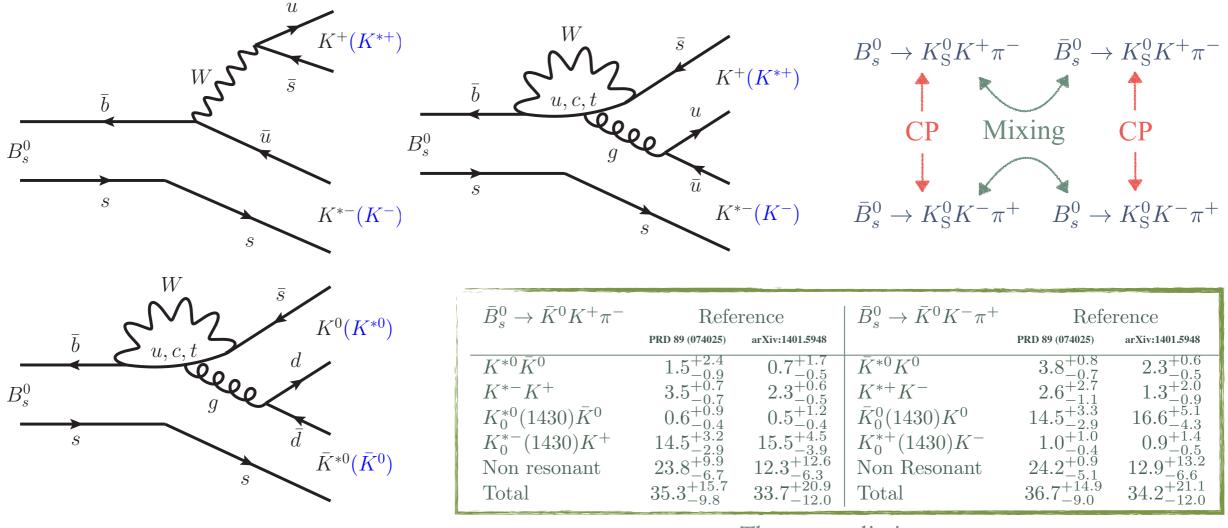
 $[3 \,\mathrm{fb}^{-1} \,\mathrm{Run}\text{-I} \,(2011/12) \,\mathrm{at} \,7/8 \,\mathrm{TeV}]$

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

Amplitude fit model features for $B_{0s}^{0} \rightarrow K_{0s}^{0}K^{\pm}\pi^{\mp}$ decays

[Non-public results]: $\mathcal{L} = 3 \text{fb}^{-1} - 2011 + 2012$ dataset

Method: effective untagged time-integrated analysis


[LHCb-ANA-2014-045]

Decay channel $B_s^0 \to K_S^0 K^{\pm} \pi^{\mp}$ corresponds in fact to four different DP's: $B_s^0(\overline{B}_s^0) \to K_S^0 K^{+} \pi^{-}$ and $B_s^0(\overline{B}_s^0) \to K_S^0 K^{-} \pi^{+}$ final states.

Leading diagrams are dominated by either $K^*(892)$ or $K^*(1430)$ contributions:

Theory predictions

The decay-time distribution for B_{s}^{0} and \overline{B}_{s}^{0} meson decays to a final state f(e.g. $B_{s}^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-}$) can be written as:

$$\frac{d}{dt}\Gamma_{\overline{B}_{s}^{0}\to f}(t) = \frac{\mathcal{N}_{f}e^{-t/\tau(B_{s}^{0})}}{2\tau(B_{s}^{0})} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + S_{f}\sin\left(\Delta m_{s}t\right) - C_{f}\cos\left(\Delta m_{s}t\right) + A_{f}^{\Delta\Gamma_{s}}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right)\right]$$

$$\frac{d}{dt}\Gamma_{B_{s}^{0}\to f}(t) = \frac{\mathcal{N}_{f}e^{-t/\tau(B_{s}^{0})}}{2\tau(B_{s}^{0})} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - S_{f}\sin\left(\Delta m_{s}t\right) + C_{f}\cos\left(\Delta m_{s}t\right) + A_{f}^{\Delta\Gamma_{s}}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right)\right]$$

$$S_{f} \equiv \frac{2\Im(\lambda_{f})}{1+|\lambda_{f}|^{2}} \qquad C_{f} \equiv \frac{1-|\lambda_{f}|^{2}}{1+|\lambda_{f}|^{2}} \qquad A_{f}^{\Delta\Gamma_{s}} \equiv -\frac{2\Re(\lambda_{f})}{1+|\lambda_{f}|^{2}} \qquad \lambda_{f} = \left|\frac{\bar{\mathcal{A}}_{f}}{\mathcal{A}_{f}}\right|e^{i(\phi_{s}^{f}+\delta_{f})}$$

In the case of B⁰_s decays, the integration between zero and infinity leads to :

$$\left(\mathcal{N}_f = \left(|A_f|^2 + |\bar{A}_f|^2\right) \times \frac{1 - y^2}{1 + y A_f^{\Delta \Gamma_s}}\right)$$

Premise: additional information on the phases between amplitudes from the $A^{\Delta\Gamma}$ term.

$$^{*}y = \tau(B_s^0)\Delta\Gamma_s/2$$

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

The additional final state has a similar decay time equation. Hence, one can access:

$$\begin{aligned} \frac{\mathcal{N}_{\bar{f}}}{\mathcal{N}_{f}} &= \frac{(|A_{\bar{f}}|^{2} + |\bar{A}_{\bar{f}}|^{2})(1 - y^{2})/(1 + yA_{\bar{f}}^{\Delta\Gamma_{s}})}{(|A_{f}|^{2} + |\bar{A}_{f}|^{2})(1 - y^{2})/(1 + yA_{f}^{\Delta\Gamma_{s}})} \\ &= \frac{1 + yA_{f}^{\Delta\Gamma_{s}}}{1 + yA_{\bar{f}}^{\Delta\Gamma_{s}}} = \frac{1 + R_{f}^{2} - 2yR_{f}\cos(\phi_{s}^{f} + \delta_{f})}{1 + R_{f}^{2} - 2yR_{f}\cos(\phi_{s}^{f} - \delta_{f})} \end{aligned}$$

- Even in absence of \mathcal{OP} in decay, in general $N_f \neq N_{\overline{f}}$
- With no CP in decay, the asymmetry between N_f and $N_{\bar{f}}$ is limited to $2yR_f/(1+R^2_f)$
- If $\cos(\varphi_s + \delta) = \cos(\varphi_s \delta) \rightarrow \operatorname{no} \mathcal{OP}$ in the interference between mixing and decay.

In this framework different Dalitz plot analyses can be performed:

Method I: Untagged and time integrated Method II: Untagged and time-dependent Method III: Tagged time-dependent

Sensitivity studies in a non-LHCb paper is being performed. Results for $B_s^0 \rightarrow K_s^0 \pi \pi$

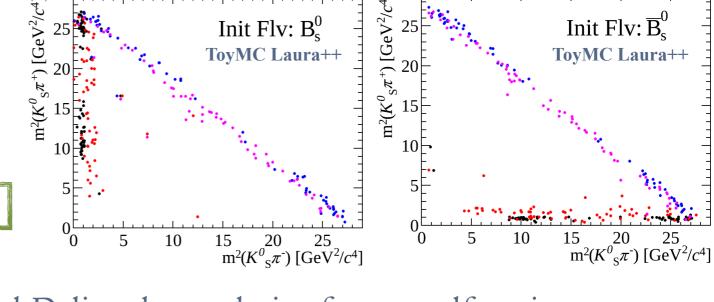
C14-07-02 arXiv:1411.2018

● [**B**⁰_(s)→ **K**⁰_Sπ⁺π⁻] - In time-integrated DP

LHCb-PAPER-2017-033, arXiv:1712.09320

(*e.g.* $K^{0}{}_{S}\rho^{0}$).

Remark: cannot perform a untagged Dalitz-plot analysis of a non-self-conjugate, non-flavour-specific final state without some assumption on A_f and A_f.


absence of $\mathcal{P}P$, two independent amplitudes remain, A_f and \overline{A}_f .

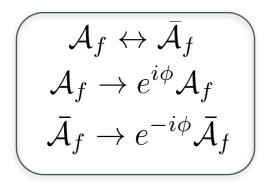
Note that for $B_{s}^{0} \rightarrow K_{s}^{0}K^{\pm}\pi^{\mp}$ decays there are four amplitudes, which even in the

In an untagged analysis it is in general impossible to disentangle the two components, except:

 $[B^0 \rightarrow K^+ \pi^- \pi^0]$ - Final state assumed to be flavour-specific, so that one of the two possible contributions vanishes.

 $B^{0}_{s} \rightarrow K^{0}K^{\pm}\pi^{\mp}$ Dalitz-plot analysis

Phys.Rev. D83 (2011) 112010

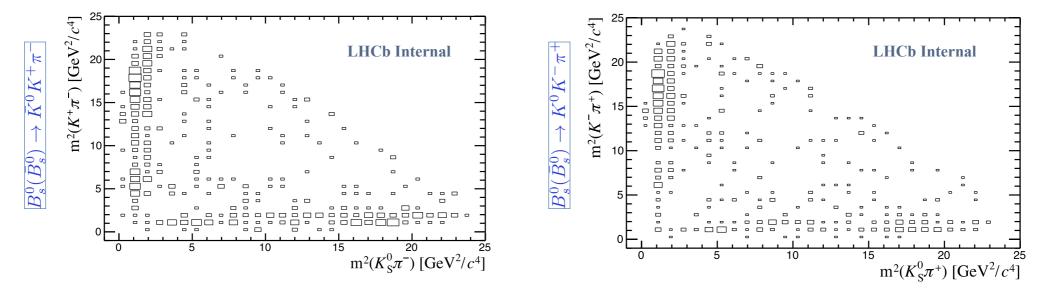


Consider an untagged decay-time-integrated Dalitz-plot analysis for $B^{0_s} \rightarrow K^{0_s}K^{\pm}\pi^{\mp}$, the simplified combined decay time for a final state is given as

$$\Gamma_{\bar{B}^0_s \to f}(t) + \Gamma_{B^0_s \to f}(t) = \frac{\mathcal{N}_f e^{-t/\tau(B^0_s)}}{\tau(B^0_s)} \left[\cosh \frac{\Delta \Gamma_s t}{2} - A_f^{\Delta \Gamma_s} \sinh \frac{\Delta \Gamma_s t}{2} \right]$$

Integrating over time and inserting the definitions, the signal probability density function that can be used in a fit is determined to be

$$\mathcal{P}_{f}^{\mathrm{sig}}(s,t) = \frac{|\mathcal{A}_{f}|^{2} + |\bar{\mathcal{A}}_{f}|^{2} - 2\mathcal{D}\mathrm{Re}(\mathcal{A}_{f}^{*}\bar{\mathcal{A}}_{f})}{\int \int_{DP} |\mathcal{A}_{f}|^{2} + |\bar{\mathcal{A}}_{f}|^{2} - 2\mathcal{D}\mathrm{Re}(\mathcal{A}_{f}^{*}\bar{\mathcal{A}}_{f}) \, ds \, dt} \qquad \qquad \mathcal{D} = \frac{\int_{0}^{\infty} \epsilon(t)e^{-\Gamma_{s}t} \sinh \frac{\Delta\Gamma_{s}t}{2} dt}{\int_{0}^{\infty} \epsilon(t)e^{-\Gamma_{s}t} \cosh \frac{\Delta\Gamma_{s}t}{2} dt},$$


Conclusion: either time-dependent or independent analyses cannot be performed without the need of <u>flavour tagging</u> for $B^0_s \rightarrow K^0_S K^{\pm} \pi^{\mp}$ decays.

Flavour-tagging is unattractive with the current statistics, so an effective DP model is used:

$$\mathcal{P}_f^{\text{sig}}(s,t) = \frac{|\mathcal{A}_f(s,t)|^2}{\int \int_{DP} |\mathcal{A}_f(s,t)|^2 \, ds \, dt}$$

$$\widehat{FF}_{j} = \frac{\int \int_{DP} |c_{j}F_{j}(s,t)|^{2} ds dt + \int \int_{DP'} \left| \bar{c}_{j}\bar{F}_{j}(s',t') \right|^{2} ds' dt'}{\int \int_{DP} \left| \sum_{k} c_{k}F_{k}(s,t) \right|^{2} ds dt + \int \int_{DP'} \left| \sum_{k} \bar{c}_{k}\bar{F}_{k}(s',t') \right|^{2} ds' dt'}$$

Although the presence of CP violation can be investigated, due to the approximations in the model, the complex coefficients obtained are not of trivial interpretation.

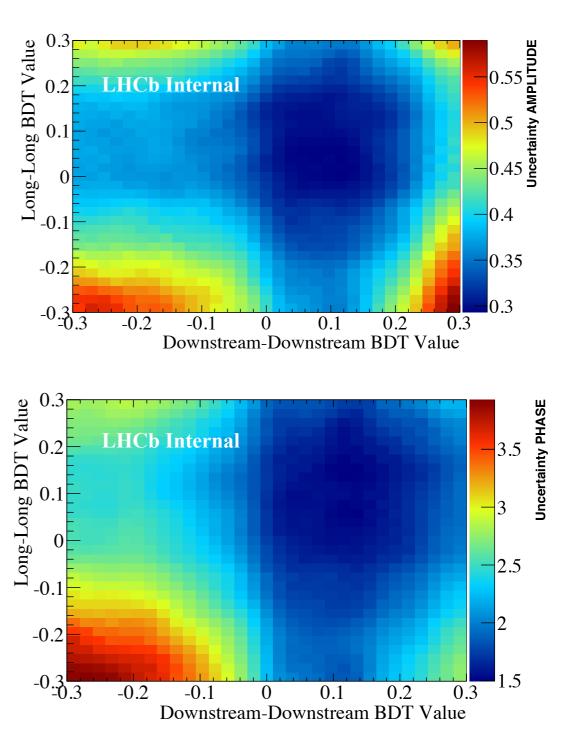
Analysis selection in a nutshell

Remark: common strategy developed for all $K^0 h^+ h^-$ channels

Dataset, mass fit, efficiency and background maps

Series of studies to enhance the DP signal yield and/ or the amplitude fit sensitivity

- Alternative MVA approaches investigated, (*e.g.* uBDT and Neurobayes using *s*Weights)
- PID criteria: DLL to ProbNN variables

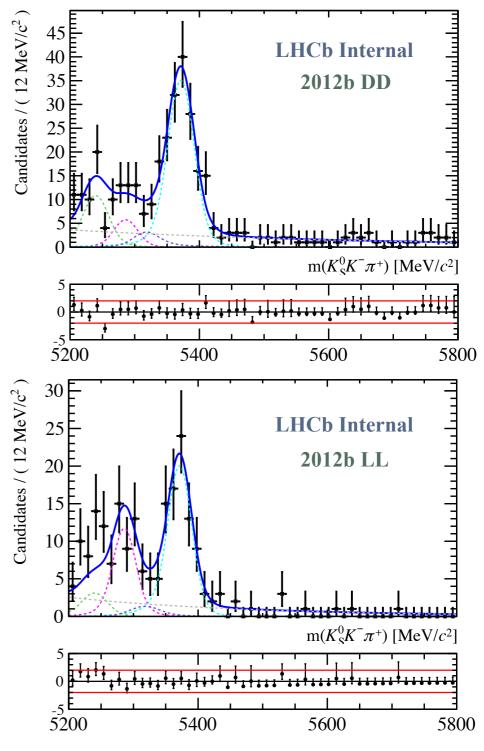

DP FoM optimisation for the optimal isobar parameter sensitivity (Stat+Syst effects)

FoM₁ =
$$\frac{S}{\sqrt{S+B}}$$
 FoM₂ = $\frac{S^2}{(S+B)^{3/2}}$ FoM₃ = $\frac{\epsilon_{sig}}{a/2 + \sqrt{B}}$

Method: : series of ToyMC studies have been done to verify the uncertainties on the DP observables.

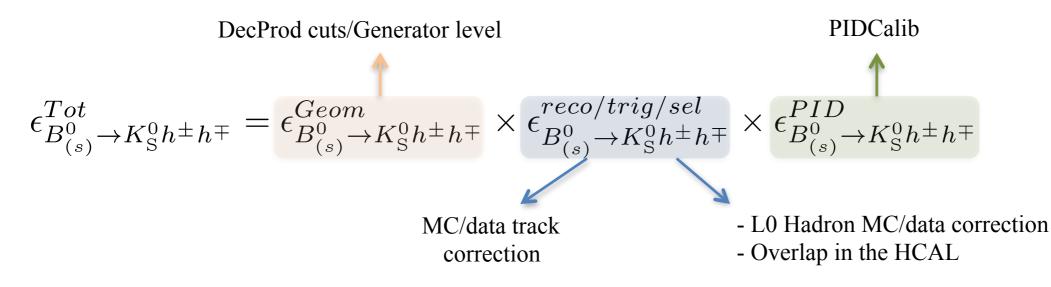
Results: FoM₂ seems to provide the best response

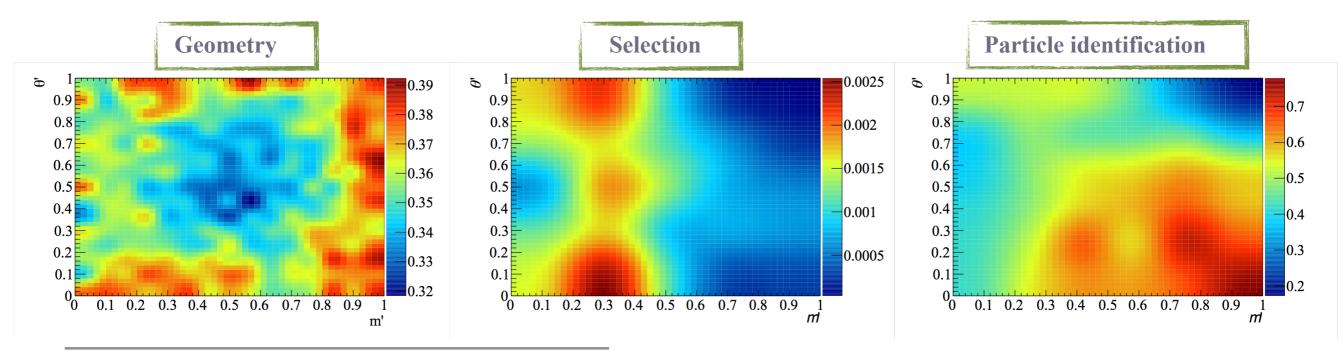
Selection technique for $B_s^0
ightarrow K_{
m S}^0 K^{\pm} \pi^{\mp}$ Dalitz plot optimisation LHCb-INT-2015-003



Strategy similar to the BR paper, where a simultaneous fit of all *four* hypotheses combinations is performed splitting between DD/LL and 2011/2012a/2012b

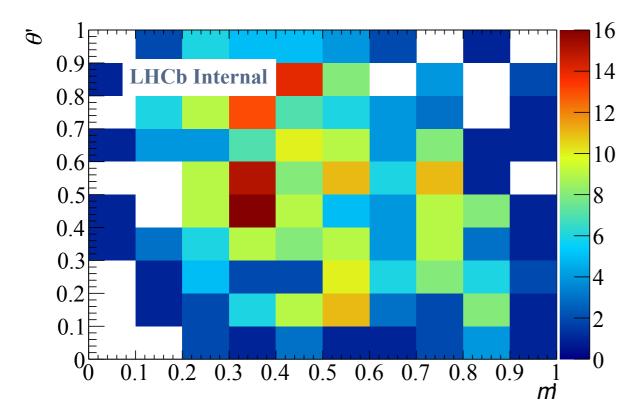
- Split between the two final state charge types
- Total yields correspond to ~ 430 $K_S^0 K^+ \pi^-$ and ~ 490 $K_S^0 K^- \pi^+$ events


			B_s^0 -signal		Combinatorial		Cross-feed	
Final state	$K_{ m s}^0$	Year	2.5σ	Full fit	2.5σ	Full fit	2.5σ	
		2011	72.1	73.6 ± 10.6	22.1	108.3 ± 15.1	1.7	
	DD	2012a	45.7	48.2 ± 8.6	14.3	70.1 ± 12.1	1.1	
$K^0_{ m s}K^+\pi^-$		2012b	130.0	135.3 ± 13.6	17.9	87.4 ± 13.8	3.1	
N _S N ⁺ <i>n</i>	$\mathbf{L}\mathbf{L}$	2011	74.6	$76.2\pm~9.8$	8.4	44.1 ± 9.8	1.8	
		2012a	36.8	$38.5\pm~7.7$	11.2	58.8 ± 11.2	0.9	
		2012b	71.9	73.5 ± 10.6	13.6	71.7 ± 13.1	1.7	
$K^0_{ m s}K^-\pi^+$	DD	2011	71.4	72.8 ± 10.3	16.1	78.9 ± 12.7	1.3	
		2012a	65.2	68.8 ± 9.6	9.5	46.2 ± 9.9	1.2	
		2012b	158.6	165.1 ± 15.2	21.3	104.1 ± 15.0	2.9	
	LL	2011	75.7	77.3 ± 9.8	7.4	39.0 ± 10.2	1.4	
		2012a	38.5	$40.3\pm~8.1$	11.2	58.9 ± 11.9	0.7	
		2012b	80.0	81.7 ± 10.4	9.5	50.1 ± 12.3	1.4	

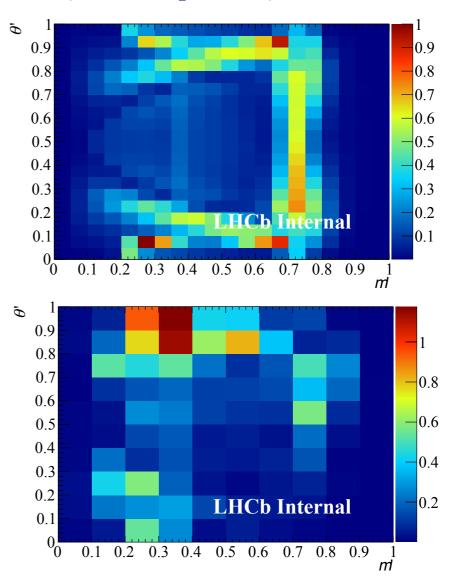

Efficiency map strategy and corrections

Similar approach used in similar Dalitz plot analyses (e.g. PRL 113 (2014) 162001):

In summary, *e.g.* $B_s^0 \rightarrow K_s^0 K^+ \pi^- DD$ 2011:


R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

Background distributions



Two main contributions are considered in the model: combinatorial (~10%) and cross-feed from from $B^0 \rightarrow K^0{}_{8}\pi^+\pi^-$ decays (3%).

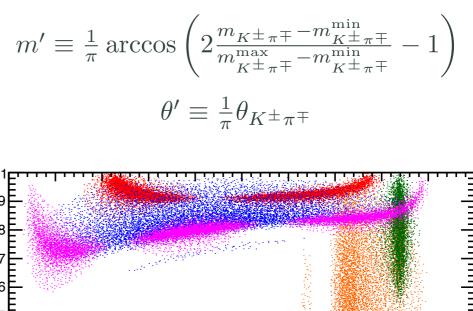
Combinatorial bkg: right side-band is statistically limited after the full selection (loose selection)

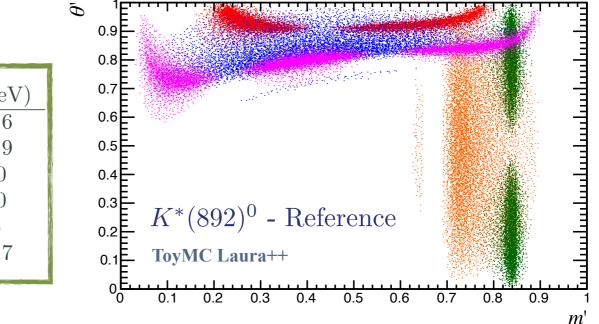
Crossfeed: re-weight MC samples using ToyMC inspired by BaBar model

Dalitz-Plot fit machinery and results

[Non-public results]: $\mathcal{L} = 3 \text{fb}^{-1} - 2011 + 2012$ dataset

First amplitude analysis of $B^0{}_s \to K^0 K^{\pm} \pi^{\mp}$ decays using an Isobar approach

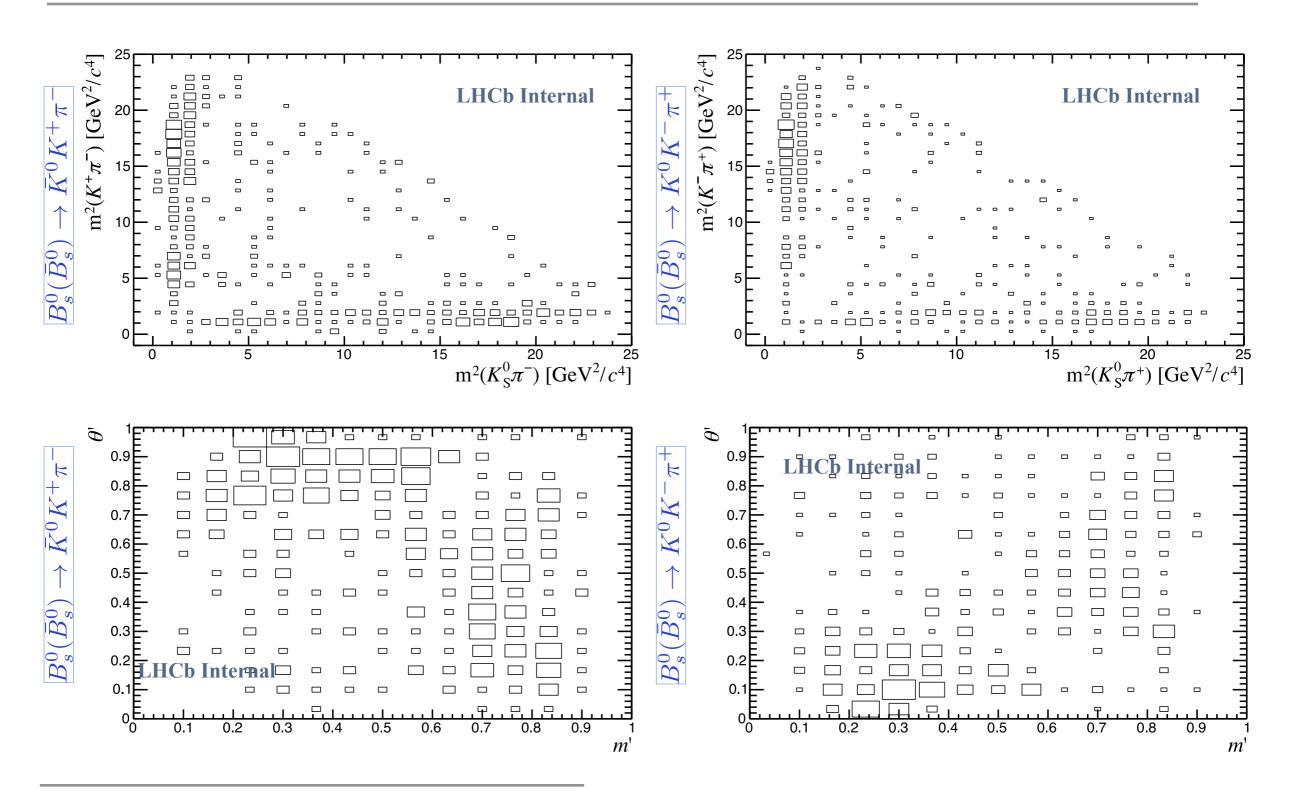



Dalitz-plot fitting

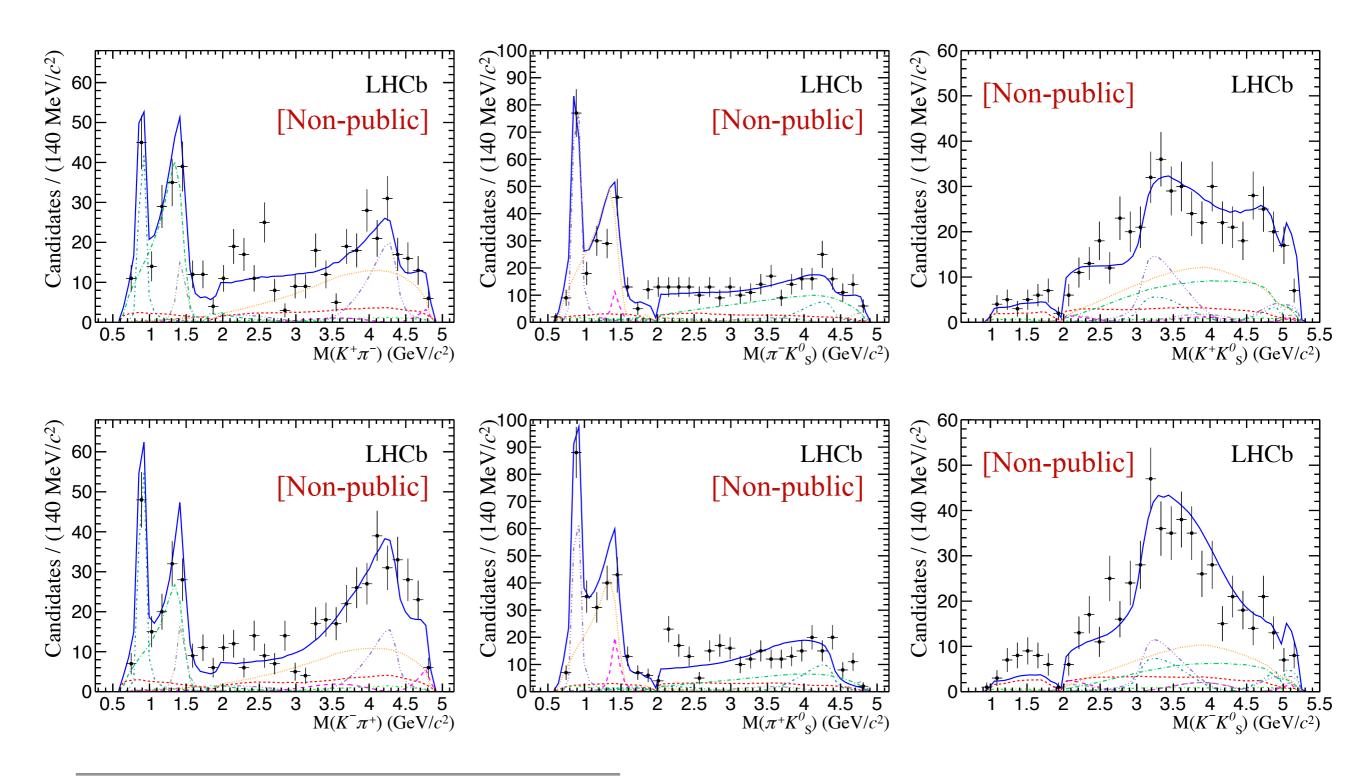
Simultaneous unbinned DP fit based on the JFit [arXiv:1409.5080] framework is performed for each event *i* and signal/background *k* component as

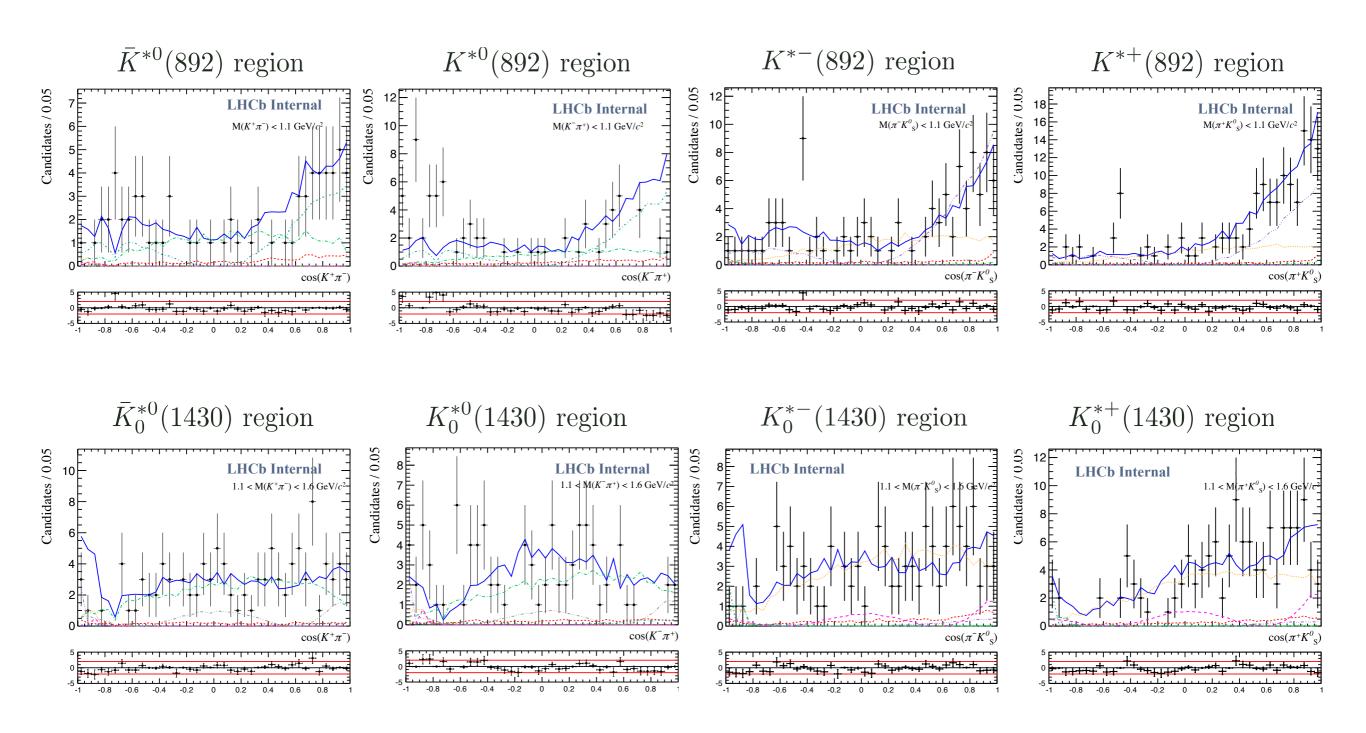
$$\mathcal{L} = \prod_{i}^{N_c} \left[\sum_{k} N_k \mathcal{P}_k \left(m_i^2 (K^{\pm} \pi^{\mp}), m_i^2 (K_{\mathrm{S}}^0 \pi^{\mp}) \right) \right]$$

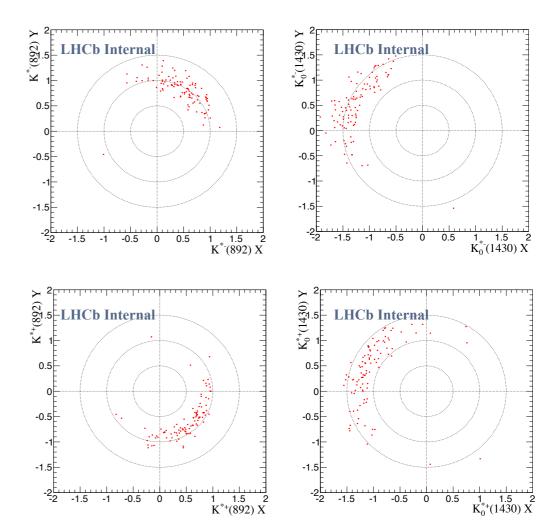
Resonance	Spin	Model	Mass (MeV/c^2)	Width (MeV)
$K^{*}(892)^{0}$	1	Rel BW	895.81 ± 0.19	47.4 ± 0.6
$K^{*}(892)^{\pm}$	1	Rel BW	891.66 ± 0.26	50.8 ± 0.9
$K_0^*(1430)^0$	0	LASS	1425 ± 50	270 ± 80
$K_0^*(1430)^{\pm}$	0	LASS	1425 ± 50	270 ± 80
$K_2^*(1430)^0$	2	Rel BW	1432.4 ± 1.3	109 ± 5
$K_2^{*}(1430)^{\pm}$	2	Rel BW	1425.6 ± 1.5	98.5 ± 2.7



Multiple solutions :


- It is possible the during the process of minimisation the fit finds multiple solutions.
- To ensure a global minimum, each fit is repeated 100 times with randomised values
- The solution with the smallest negative log-likelihood is taken as the default result.


Phase-space distributions


 $B_s^0(\bar{B}_s^0) \to K_{\rm S}^0 K^+ \pi^-$

		Isobar mod	lel coefficients
Resonance	Fit fraction $(\%)$	Real part	Imaginary part
$\overline{K}^{*}(892)^{0}$	13.2 ± 2.4	1.00	0.00
$\overline{K}_{0}^{*}(1430)^{0}$	33.9 ± 2.9	-1.33 ± 0.24	0.90 ± 0.31
$\overline{K}_{2}^{*}(1430)^{0}$	5.9 ± 4.0	0.01 ± 0.20	-0.67 ± 0.15
$K^{*}(892)^{-}$	15.6 ± 1.5	0.28 ± 0.48	1.05 ± 0.19
$K_0^*(1430)^-$	30.2 ± 2.6	-1.45 ± 0.24	0.42 ± 0.58
$K_2^*(1430)^-$	2.9 ± 1.3	0.05 ± 0.19	-0.47 ± 0.14
Total fit fraction	102		

$$B_s^0(\bar{B}_s^0) \to K_{\rm S}^0 K^- \pi^+$$

		Isobar mod	lel coefficients
Resonance	Fit fraction $(\%)$	Real part	Imaginary part
$K^*(892)^0$	19.2 ± 2.3	1.00	0.00
$K_0^*(1430)^0$	27.0 ± 4.1	1.13 ± 0.17	-0.38 ± 0.34
$K_2^*(1430)^0$	7.7 ± 2.8	-0.48 ± 0.18	0.41 ± 0.21
$K^{*}(892)^{+}$	13.4 ± 2.0	-0.59 ± 0.32	0.59 ± 0.32
$K_0^*(1430)^+$	28.5 ± 3.6	1.17 ± 0.23	-0.32 ± 0.57
$K_2^*(1430)^+$	5.8 ± 1.9	-0.16 ± 0.25	0.52 ± 0.14
Total fit fraction	102		

Stability checks for observed differences in the isobar parameters indicated good determination of fit fractions

Signal/background yields from mass fit

- Statistical: propagate using covariance matrix RMS from ensemble of 100 fits
- Fixed Parameters: similar to stat errors
- Alternative model: 1-CB and constraints on the background shape (nominal diff)

Background modelling

 Histograms are varied 100x and the data is refitted RMS from ensemble

Efficiency mapping

- Maps: similar to background model
- PIDCalib: different binning scheme

Fit intrinsic bias

Pseudo-experiments

Fixed parameters in the DP fit

- Mass and widths of all resonances
- Blatt-Weisskopf radius parameters
- LASS parameters r and a
- Fit is repeated varying each of these and RMS of distribution is examined

$K\pi$ S-wave model

• EFKLLM model is examined

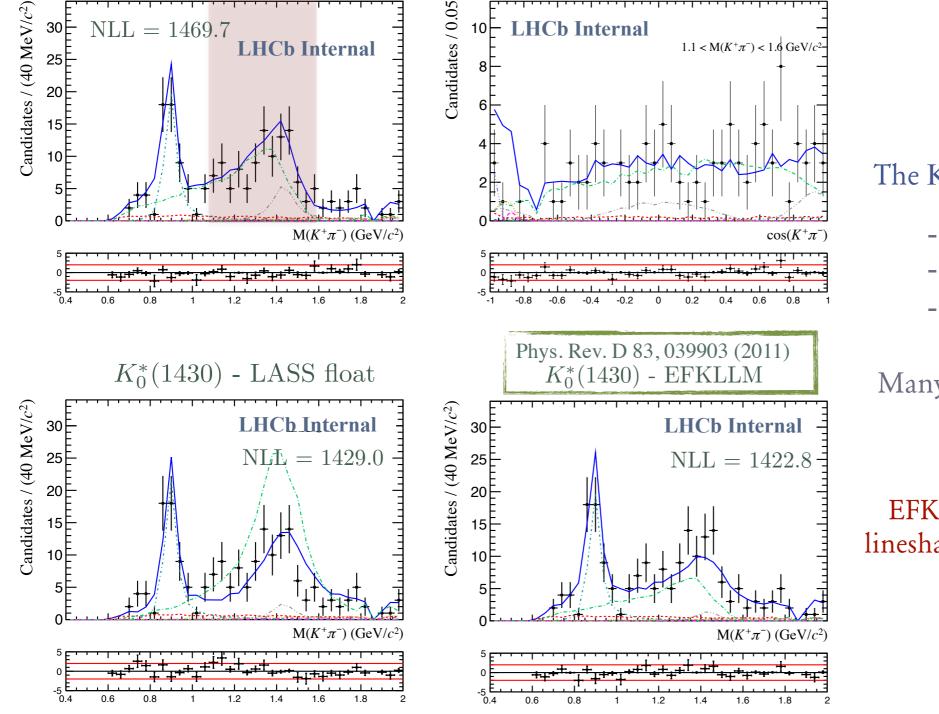
Addition/removal marginal components

Examples: insertion of insertion of the a₂(1320)[±] resonance

"Effective" flavour average approach

 Time-dependent toys to assign mismodelling of the model approximation

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

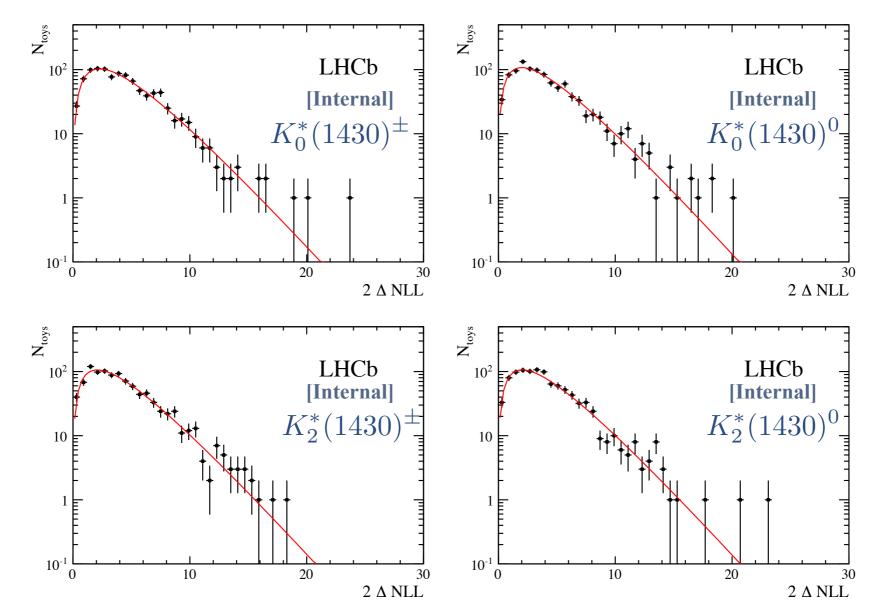

The results for the various sources of systematic uncertainties are given below:

				Fit fraction	n (%) uncert	ainties		
Resonance	Yields	Eff.	Bkg. SDP	Fit Bias	Add. Res.	Fixed Par.	Model Alt.	Total
$K^{*}(892)^{-}$	0.19	0.52	0.18	0.19	0.03	0.71	5.40	5.48
$K_0^*(1430)^-$	0.12	0.63	0.23	0.34	0.06	2.12	22.00	22.1
$K_2^*(1430)^-$	0.14	0.29	0.12	0.58	0.10	1.82	2.20	2.94
$\overline{K}^{*}(892)^{0}$	0.22	0.40	0.18	0.92	0.02	0.35	7.00	7.09
$\overline{K}_{0}^{*}(1430)^{0}$	0.16	0.89	0.34	0.36	0.06	4.38	3.30	5.58
$\overline{K}_{2}^{*}(1430)^{0}$	0.13	0.69	0.31	1.30	0.20	4.42	3.60	5.90
$K^{*}(892)^{+}$	0.39	0.62	0.12	0.46	0.12	0.75	1.10	1.60
$K_0^*(1430)^+$	0.47	0.69	0.38	0.76	0.16	6.44	13.00	14.6
$K_2^*(1430)^+$	0.07	0.41	0.20	0.24	0.15	4.13	4.50	6.14
$K^*(892)^0$	0.37	0.39	0.34	0.25	0.25	0.51	3.00	3.13
$K_0^*(1430)^0$	0.36	0.62	0.43	0.79	0.67	0.90	3.90	4.22
$K_2^*(1430)^0$	0.14	0.37	0.23	0.80	0.06	1.04	5.50	5.67

Dominant uncertainties come from the K π S-wave model, e.g. the choice of the alternative line shapes to the LASS model for the K*±,0(1430) states

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

The $K\pi$ spectrum is modelled:


- K*(892) [Rel BW]
- K*₀(1430) [LASS fixed]
- K*₂(1430) [Rel BW]

Many alternative scenario have been investigated:

EFKLLM is used as alternative lineshape model (large systematics)

Series of ensembles were generated and fitted with and without the resonance included

 $K_0^*(1430)$ resonances are seen with more than 15 standard deviations

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

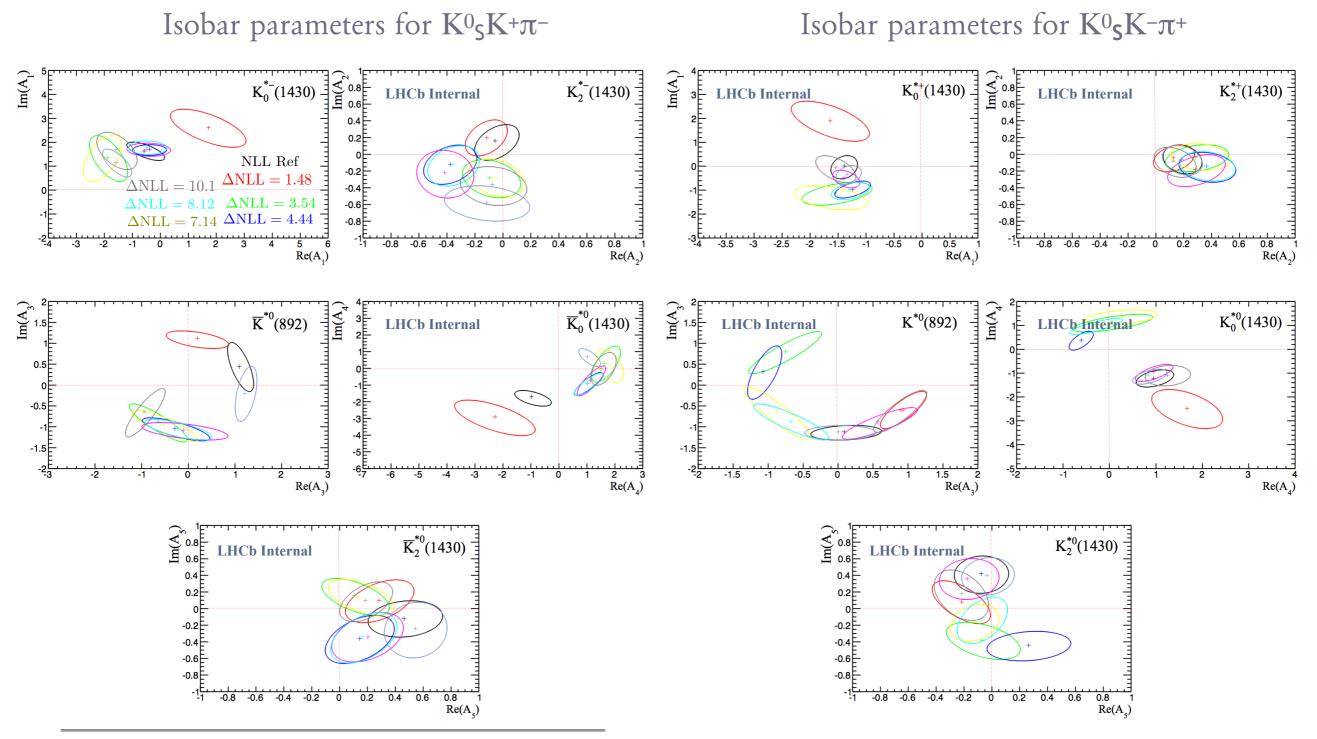
The fit fractions of the resonant components can be converted into quasi-two-body BF:

$\mathcal{B}\left(B_s^0 \to K^*(892)^{\pm}K^{\mp}\right) =$	=	$(18.6 \pm 1.2 \pm 0.8 \pm 2.8 \pm 2.0) \times 10^{-6}$
$\mathcal{B}\left(B_s^0 \to K_0^*(1430)^{\pm} K^{\mp}\right) =$	=	$(31.3 \pm 2.3 \pm 0.7 \pm 17.8 \pm 3.3) \times 10^{-6}$
$\mathcal{B}\left(B_s^0 \to K_2^*(1430)^{\pm} K^{\mp}\right) =$	=	$(10.3 \pm 2.5 \pm 1.1 \pm 11.5 \pm 1.1) \times 10^{-6}$
$\mathcal{B}\left(B_s^0 \to \overline{K}^*(892)^0 \overline{K}^{0}\right) =$	=	$(19.8 \pm 2.8 \pm 1.2 \pm 3.0 \pm 2.1) \times 10^{-6}$
$\mathcal{B}\left(B_s^0 \to \overline{K}_0^*(1430)^0 \overline{K}^{0}\right) =$	=	$(33.0 \pm 2.5 \pm 0.9 \pm 6.1 \pm 3.5) \times 10^{-6}$
$\mathcal{B}\left(B_s^0 \to \overline{K}_2^{*}(1430)^0 \overline{K}^{0}\right) =$	=	$(16.8 \pm 4.5 \pm 1.7 \pm 14.8 \pm 1.8) \times 10^{-6}$

Results are in good agreement with, and more precise than, the previous measurements
 Measurements for K*±0(1430) are largely dominated by S-wave modelling

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

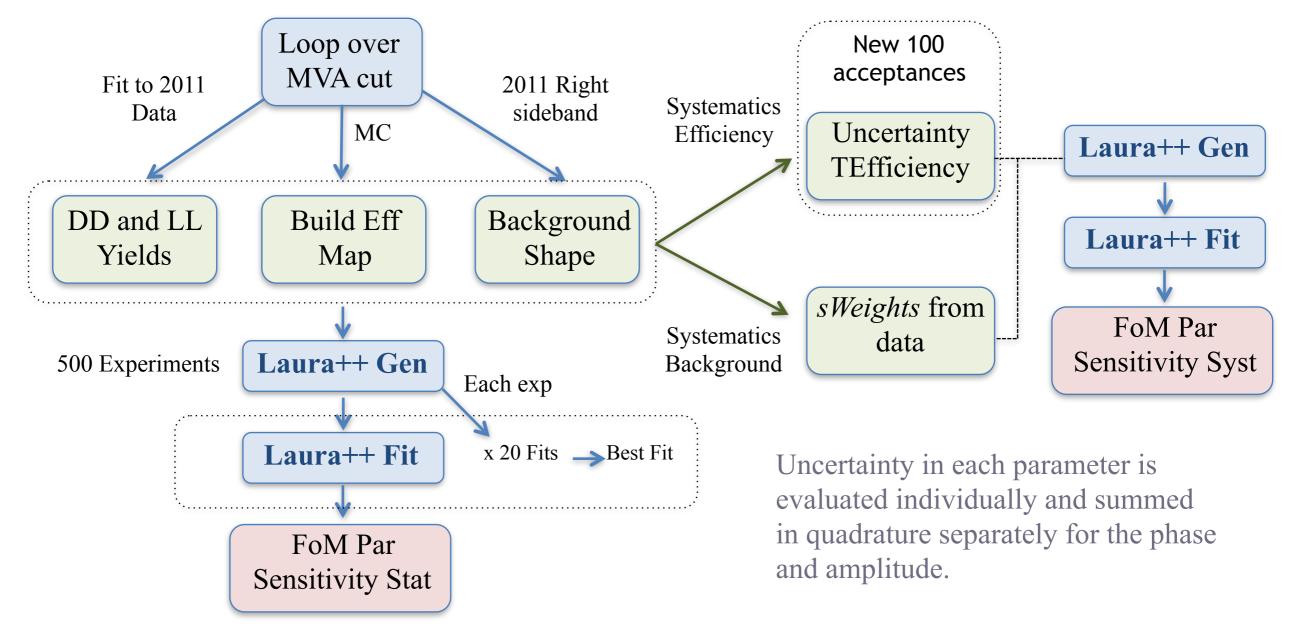
Summary


- Due to the approximations in the amplitude model, an untagged time independent approach can only provide information about the fit fractions
- All the steps of the analysis are finalised and paper draft is close to completion
 - Results for K*0,±(892) resonances indicate a good agreement with previous measurements
 - Systematics related to the K*(1430) resonances are currently the limiting factor in the measurement
 - Mevertheless, first observation of the K*(1430) states is obtained
- Full potential (e.g. \mathcal{P}) of this channel will be only possible in LHCb Run 3-4

R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

[Backup]

Secondary minima


R. Silva Coutinho (UZH) - Multi-body b-hadrons workshop

[Backup]

FoM selection optimisation framework

Framework : machinery developed to extract inputs from data and MC and provide to Laura++ to produce Toy MC's.

