

Charmless baryonic weak-decay processes

Eduardo Rodrigues University of Cincinnati

Workshop on multibody charmless B-hadron decays LPNHE, Paris, June 6th 2018

Charmless b-hadron decays – some triumphs and puzzles

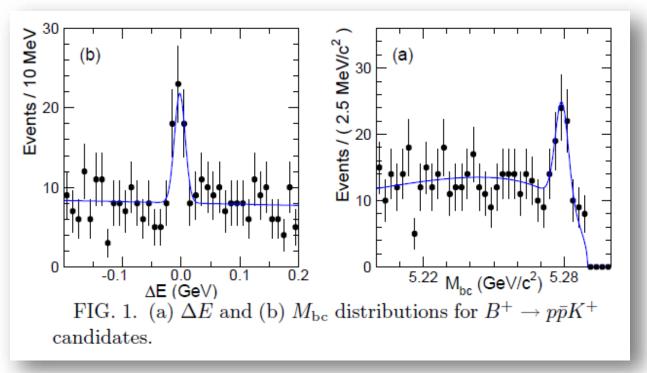
Take-away message: charmless decays have been providing a wealth of important results in Flavour Physics !

Triumphs

- □ 1st observation of CP violation in B_s mesons
- □ Observation of the largest CP violation effects, in 3-body B⁺ decays
- □ 1st evidence for CP violation in baryonic B decays
- □ 1st evidence for CP violation in the decay of a baryon

Puzzles / features

- \Box K- π puzzle in 2-body B decays
- \Box Polarisation puzzle in B \rightarrow V V decays
 - Unexpectedly small longitudinal polarisation component in $B \to \phi \; K^*$ decays
- □ Threshold enhancement in baryonic B decays


Baryonic decays: a bit of history and motivation ...

1st evidence for B decay to a charmless baryonic final state

(Belle Collaboration)

We report the observation of the decay mode $B^{\pm} \to p\bar{p}K^{\pm}$ based on an analysis of 29.4 fb⁻¹ of data collected by the Belle detector at KEKB. This is the first example of a $b \to s$ transition with baryons in the final state. The $p\bar{p}$ mass spectrum in this decay is inconsistent with phase space and is peaked at low mass. The branching fraction for this decay is measured to be $\mathcal{B}(B^{\pm} \to p\bar{p}K^{\pm}) = (4.3^{+1.1}_{-0.9}(\text{stat}) \pm 0.5(\text{syst})) \times 10^{-6}$. We also report upper limits for the decays $B^0 \to p\bar{p}K_s$ and $B^{\pm} \to p\bar{p}\pi^{\pm}$.

 $\mathcal{B}(B^+ \to p\bar{p}K^+) = (4.3^{+1.1}_{-0.9}(\text{stat}) \pm 0.5(\text{syst})) \times 10^{-6}$

Phys. Rev. Lett. 88, 181803 (2002)

Baryonic B decays – motivation

□ Inclusive branching fraction (BF) to baryonic final states ~ 7% of B-meson total width !

- Most decay modes still to be studied / observed
- Large variety of final states possible thanks to a large B mass

□ Threshold enhancement in baryon-antibaryon system observed in many decay modes [see e.g. "The physics of the B factories", Eur. Phys. J. C74 (2014) 3026]

□ Many-body final states tend to have a larger BF than 3- and 2-body final states

$$\mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{+} \pi^{-}) \gg \mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{0}) \qquad \qquad \mathcal{B}(B \to \mathfrak{B}_{1c} \mathfrak{B}_{2c}) \sim 10^{-3} \\ \gg \mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p}), \qquad \qquad \gg \mathcal{B}(\overline{B} \to \mathfrak{B}_{c} \overline{\mathfrak{B}}) \sim 10^{-5} \\ \gg \mathcal{B}(\overline{B} \to \mathfrak{B}_{1} \overline{\mathfrak{B}}_{2}) \qquad \lesssim 10^{-6}$$

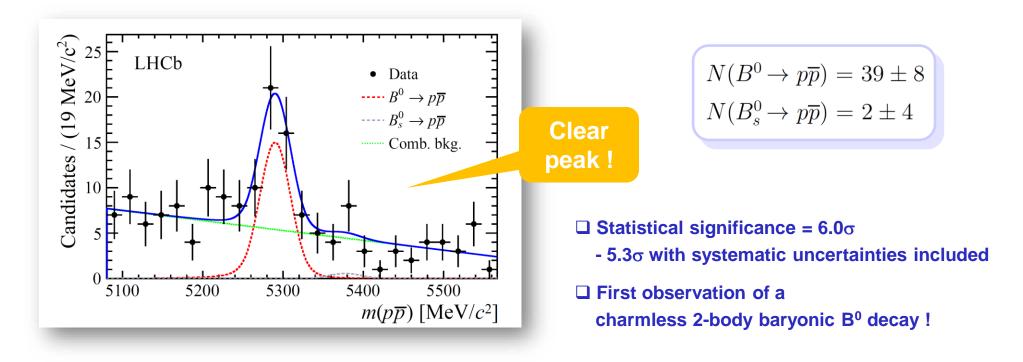
□ Theoretical description is a challenge and various models "in competition"

- Theshold enhancement not fully understood

0

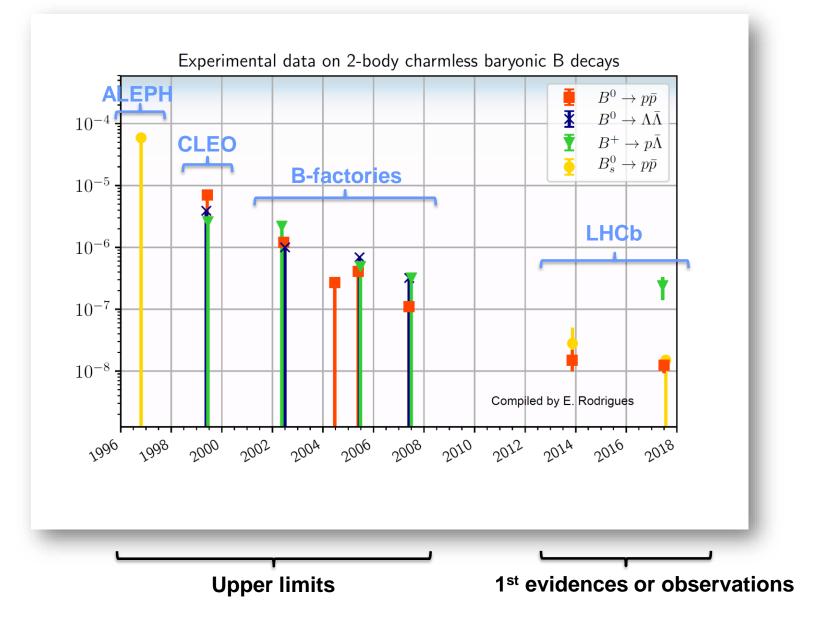
Baryonic B decays – short history & highlights

□ 1997: 1st observation of baryonic B decays [PRL 79, 3125 (1997)]

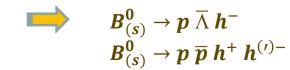

- **2002:** 1st observation of a charmless baryonic B decay, $B^+ \rightarrow p \,\overline{p} \, K^+$ [PRL 88, 181803 (2002)]
- **2013:** 1st evidence for a baryonic B_s decay, $B_s^0 \to \overline{\Lambda}_c^- \Lambda \pi^-$ [Phys. Lett. B 726 (2013)]
- □ Many B⁰ and B⁺ baryonic decays observed and studied, with charm in the final state, or charmless
- **Experimental observation of threshold enhancement in baryon-antibaryon invariant mass** in several decay modes
- **2013:** 1st observation of a 2-body charmless baryonic mode: $B^+ \rightarrow p \overline{\Lambda}(1520)$ [PRL 113, 141801 (2014)] 1st evidence for CP violation in a baryonic B decay, seen in $B^+ \rightarrow p \,\overline{p} \, K^+$ [PRL 113, 141801 (2014)] 1st evidence for very suppressed $B^0 \rightarrow p \overline{p}$ with 2011 data analysis [JHEP 10 (2013) 005] \Box 2014: 1st observation of a baryonic B_c^+ decay, $B_c^+ \rightarrow J/\phi p \,\overline{p} \,\pi^+$ [PRL 113, 152003 (2014)] \Box 2016: 1st evidence for suppressed $B^+ \rightarrow p \overline{\Lambda}$ [JHEP 04 (2017) 162] 1st observation of a baryonic B_s^0 decay, $B_s^0 \rightarrow p \overline{\Lambda} K^-$ [arXiv:1704.07908 [hep-ex]] Observation of charmless $B^0_{(s)} \rightarrow p \ \overline{p} \ h^+ h'^-$ decays [arXiv:1704.08497 [hep-ex]] \Box 2017: 1st observation of a purely baryonic B^0 decay, $B^0 \rightarrow p \ \overline{p}$ [arXiv:1709.01156 [hep-ex]] **Eduardo Rodrigues** LPNHE Workshop, Paris, 6 June 2018

factories

Rare modes



Rare baryonic = typically 2-body decays ... but only? $B^0_{(s)} \rightarrow p \ \overline{p}$ □ Rarest B⁰ decay ever observed, and also rarest hadronic B decay ever observed !



$$\mathcal{B}(B^0 \to p\overline{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$$
$$\mathcal{B}(B^0_s \to p\overline{p}) < 1.5 \times 10^{-8} \text{ at } 90\% \text{ confidence level}$$

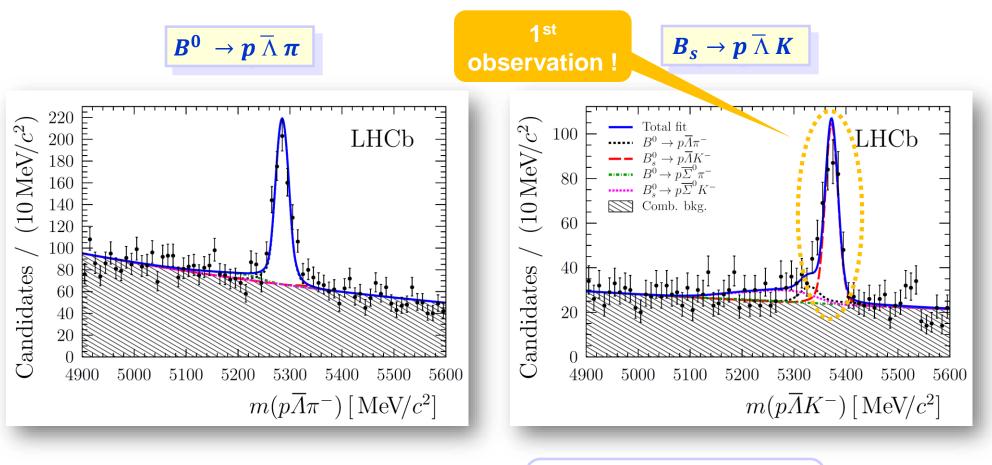
Where do we stand for 2-body decays ?

Baryonic B_s decays

Search for baryonic B_s decays – motivation recap

□ Baryonic decays of B mesons had been observed for all B species *except* the B_s meson !

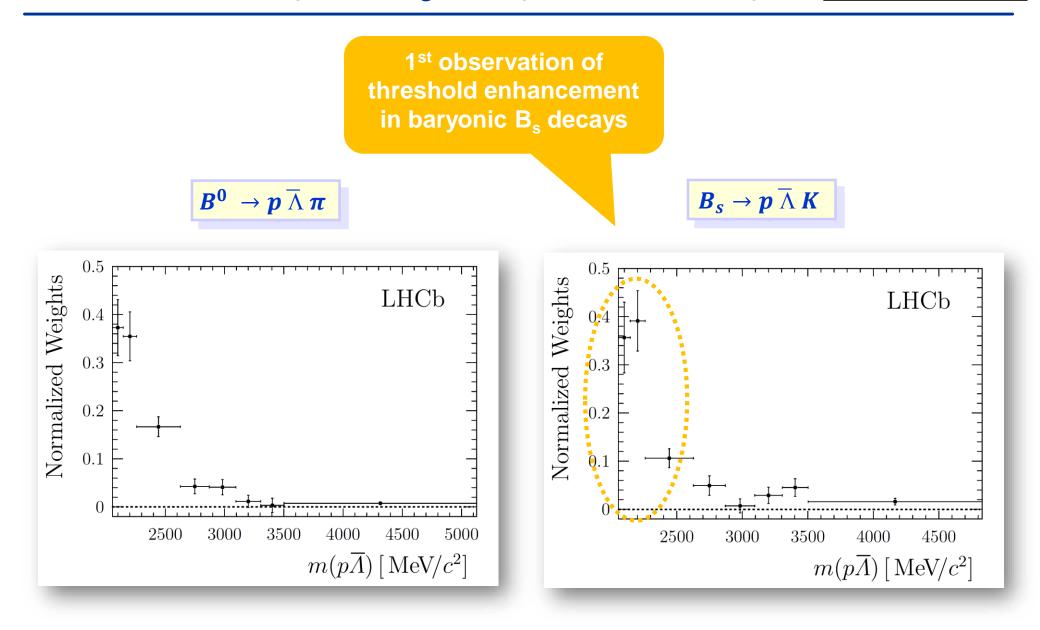
- Only evidence of $B_s^0 \to \overline{\Lambda}_c^- \wedge \pi^-$ by Belle [Phys. Lett. B 726 (2013) 206]
- \Box 2-body modes are rather suppressed \Rightarrow exploit 3-body final states (and 4-body states ...)


 $\square B_s^0 \rightarrow p \overline{\Lambda} K^-$ seen as a good candidate given that the related mode $B^0 \rightarrow p \overline{\Lambda} \pi^$ has a large BF ~ 3 x 10⁻⁶ and is well studied

\Box Experimental situation for $B^0_{(s)} \rightarrow p \overline{\Lambda} h^-$ decays and cousins :

Decay Channel	BaBar ${\cal B}$ or UL	Belle \mathcal{B} or UL
$B^0 \! \to p \overline{\Lambda} \pi^-$	$(3.07 \pm 0.39) \times 10^{-6} [18]$	$(3.23^{+0.33}_{-0.29} \pm 0.29) \times 10^{-6} [19]$
$B^0 \rightarrow p \overline{\Lambda} K^-$	-	$< 8.2 \times 10^{-7} \ [16]$
$B^0_s \rightarrow p \overline{\Lambda} K^-$	-	-
$B_s^0 \rightarrow p \overline{\Lambda} \pi^-$	-	-
$B^0 \rightarrow p \overline{\Sigma}^0 \pi^-$	-	$< 3.8 \times 10^{-6} \ [16]$
$B^0_s \to p \overline{\varSigma}^0 K^-$	-	-

□ No theoretical predictions were available before the LHCb experimental results became public


LHCb analysis on full run-I data sample

$$\begin{split} N(B^0_s &\to p\overline{A}K^-) = 234 \pm 29 \\ N(B^0 &\to p\overline{A}\pi^-) = 519 \pm 28 \end{split}$$

1st obs of a baryonic B_s decay – 2-part. proj.

PRL 119, 041802 (2017)

First observation of a baryonic B_s decay

□ First observation of a baryonic B_s decay !

 \Box With a statistical significance > 15 σ

□ Branching fraction determined to be

$$\mathcal{B}(B_s^0 \to p\overline{\Lambda}K^-) + \mathcal{B}(B_s^0 \to \overline{p}\Lambda K^+) = \begin{bmatrix} 5.46 \pm 0.61 \pm 0.57 \pm 0.50(\mathcal{B}) \pm 0.32(f_s/f_d) \end{bmatrix} \times 10^{-6}$$
Uncertainty on $B^0 \to p\overline{\Lambda}\pi$
Uncertainty on ratio of branching fraction
Uncertainty on ratio of fragmentation probabilities
$$\Box$$
Result opens a new area of research on baryonic B decays

- So far baryonic B_s^0 decays had only been theo. studied [PRD 91 (2015) 077501; PRD 89 (2014) 056003] in the case of 2-body final states following the 1st evidence for $B^0 \rightarrow p \ \overline{p}$ reported by LHCb in 2013 [JHEP 10 (2013) 005] and in charmed baryonic decays [EPJ C 75 (2015) 101]

Decay-time-dependent CP violation measurements interesting with this unique baryonic decay ... !

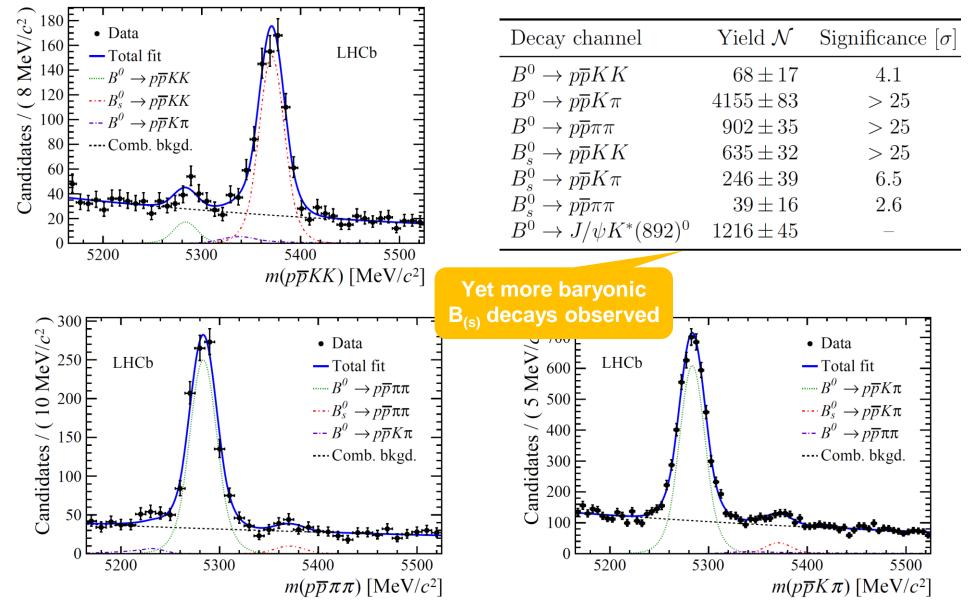
Time-dependent CPV in baryonic B decays

 $\Box B^{0} \to p \overline{\Lambda} \pi^{-} \text{ is flavour-specific, unlike } B^{0}_{s} \to p \overline{\Lambda} K^{-} :$ (in some analogy with $B^{0}_{s} \to D^{+}_{s} \pi^{-}$ and $B^{0}_{s} \to D^{+}_{s} K^{-}$)

 \Box All 4 processes B_s^0 , $\overline{B}_s^0 \rightarrow p \overline{\Lambda} K^-$, $\overline{p} \Lambda K^+$ are possible

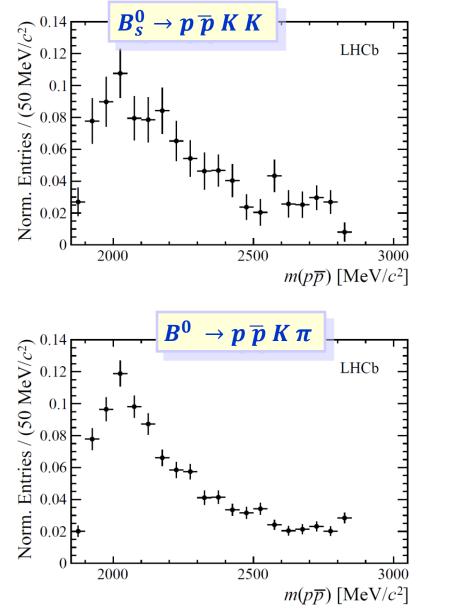
 \Rightarrow need for a flavour-tagged time-dependent analysis to disentangle all contributions

First case realised of a baryonic B decay where time-dependent CP violation measurements are relevant


❑ Ratio of amplitudes predicted to be large ⇒ potentially large CP violating asymmetries !

□ Typical TDCPV analyses require data samples of minimum \approx 1.0 – 1.5 k events ⇒ need full data sample to be collected in LHCb's run II

(Extrapolation from run-I analysis assuming a two-fold increase in the b production cross-section between run I and run II)


PRD 96, 051103(R) (2017)

$B^0_{(s)} ightarrow p \ \overline{p} \ h^+ \ h'^-$ – threshold enhancement

PRD 96, 051103(R) (2017)

- Efficiency-corrected and background-subtracted sPlot'ed dist'ons
 Clear threshold enhancement
 - Confirmation of thresh. enhancement in baryonic B_s^0 decays

$B^0_{(s)} \rightarrow p \,\overline{p} \, h^+ \, h'^- \text{ decays} - \text{branching fractions}^{\text{PRD 96, 051103(R) (2017)}}$

□ 3 first observations and 1 first evidence !

Decay channel	Yield $\mathcal N$	Significance $[\sigma]$	Branching fraction / 10^{-6}
$B^0 \to p\overline{p}KK$	68 ± 17	4.1	$0.113 \pm 0.028 \pm 0.011 \pm 0.008$
$B^0 \to p \overline{p} K \pi$	4155 ± 83	> 25	$5.9 \pm 0.3 \pm 0.3 \pm 0.4$
$B^0 \to p \overline{p} \pi \pi$	902 ± 35	> 25	$2.7 \pm 0.1 \pm 0.1 \pm 0.2$
$B_s^0 \to p\overline{p}KK$	635 ± 32	> 25	$4.2 \pm 0.3 \pm 0.2 \pm 0.3 \pm 0.2$
$B^0_s \to p\overline{p}K\pi$	246 ± 39	6.5	$1.30 \pm 0.21 \pm 0.11 \pm 0.09 \pm 0.08$
$B_s^0 \to p \overline{p} \pi \pi$	39 ± 16	2.6	$0.41 \pm 0.17 \pm 0.04 \pm 0.03 \pm 0.02$
$B^0 \to J/\psi K^*(892)^0$	1216 ± 45	_	_

90% C.L. upper limit set on non-significant signal

 $\mathcal{B}(B_s^0 \to p\overline{p}\pi\pi) < 6.6 \times 10^{-7} \text{ at } 90\%$ confidence level

□ Ratios of BFs also determined:

$\mathcal{B}(B^0 \to p\overline{p}KK) / \mathcal{B}(B^0 \to p\overline{p}K\pi)$	$0.019 \pm 0.005 \pm 0.002$
$\mathcal{B}(B^0 \to p\overline{p}\pi\pi)/\mathcal{B}(B^0 \to p\overline{p}K\pi)$	$0.46 \pm 0.02 \pm 0.02$
$\mathcal{B}(B^0_s \to p\overline{p}K\pi)/\mathcal{B}(B^0 \to p\overline{p}K\pi)$	$0.22 \ \pm 0.04 \ \pm 0.02 \ \pm 0.01$
$\mathcal{B}(B^0_s \to p\overline{p}K\pi)/\mathcal{B}(B^0_s \to p\overline{p}KK)$	$0.31 \pm 0.05 \pm 0.02$

Purely baryonic 4-body decays

Purely baryonic multibody decays – $B^0_{(s)} \rightarrow p \,\overline{p} \, p \,\overline{p}$

 \Box All seen charmless baryonic 2-body decays are rare, to very rare, e.g. $B^0 \rightarrow p \ \overline{p}$

Having in mind the hierarchy in baryonic B decays, can this suppression be alleviated in multi-body purely baryonic decays, where there is no meson to recoil against the baryon-antibaryon pair?

 \Box Decay mode(s) $B^0_{(s)} \rightarrow p \ \overline{p} \ p \ \overline{p}$ are the obvious 1st candidates to investigate

 \Box Does a back-to-back ($p \overline{p}$)-pair configuration happen very often here?

□ Does one observe a threshold enhancement across the phase space? Symmetrically?

□ For reference, BaBar had looked for $\overline{B}{}^0 \rightarrow \Lambda_c^+ \overline{p} \overline{p} p$ [PRD 89, 071102 (2014)]

□ Otherwise area of B decays to 2 baryon-antibaryon pairs is totally to be explored ... except ...

Eduardo Rodrigues

BaBar search for $B^0 \rightarrow p \,\overline{p} \, p \,\overline{p}$

□ BaBar took (for now) the lead in searches for purely baryonic multi-body B decays ...

□ Search with full data set

 \Box Hint of a signal, with a significance of 2.9 σ

□ Branching fraction:

 $\mathcal{B}(B^0 \to pp\bar{p}\bar{p}) = (1.1 \pm 0.5 \pm 0.2) \times 10^{-7}$

90% C.L. upper limit @ 2x10-7

□ What can LHCb say here ...

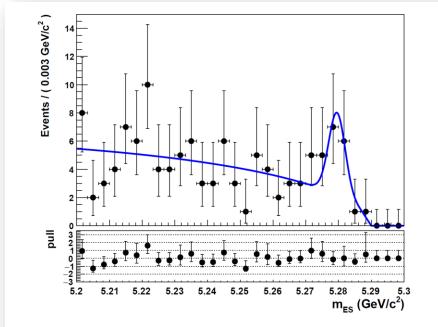
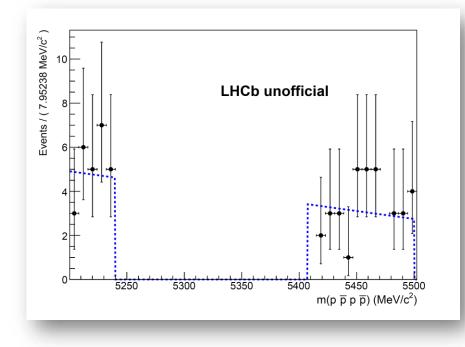


FIG. 3. Fit to the data $m_{\rm ES}$ distribution (dots) in the interval $5.2 < m_{\rm ES} < 5.3 \ {\rm GeV}/c^2$. The bottom plot shows the pull distribution, which is the bin-by-bin difference between the data and fitted distribution normalized by the corresponding statistical uncertainty from the fit.

Ongoing LHCb search for $B^0 \rightarrow p \,\overline{p} \, p \,\overline{p}$!


□ Search to be performed on full run I+II data sample

□ Given typical reconstruction and selection efficiencies in LHCb, we have a real change to observe at least the B⁰ mode !

❑ As an appetizer, VERY PRELIMINARY, and hence UNOFFICIAL spectrum with both B⁰ and B_s signal regions blinded

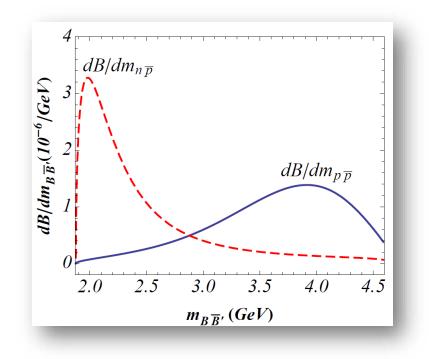
□ Note:

Remarkably, there is no multivariate selection here. Particle identification and a cut on B-vertex quality is enough !

LHCb unofficial, run I data

Purely baryonic decay processes

Purely baryonic decay processes


- ❑ Decay processes involving only spin-carrying particles ⇒ very interesting testbed for CP violation
- □ Totally new and unexplored area, both theoretically and experimentally !
- **Experimental study fully on LHCb hands for the foreseeable future**

- □ First exploratory work on the theoretical side in collaboration with Profs. C.Q. Geng & Y.K. Hsiao
 - "Exploring the simplest purely baryonic decay processes" [Phys. Rev. D 94, 014027 (2016)]
- \Box The simplest decay is $\Lambda_b \rightarrow p \ \overline{p} \ n$! Only spin-1/2 baryons involved
 - Unique decay for obvious reasons
- □ Could also consider decays of heavier b baryons ...

□ Branching fraction typical for a charmless final state :

$$\mathcal{B}(\Lambda_b^0 \to p\bar{p}n) = (2.0^{+0.3}_{-0.2}) \times 10^{-6}$$

- Threshold enhancement predicted
 - Typical for a baryonic decay
- But of course it is not accessible experimentally as it depends on the neutron
- The other possible distribution, for the neutron-proton pair, should not present any threshold enhancement

"Roadmap" for purely baryonic decay processes arx

arXiv:1806.00861

□ Kind of roadmap article released to the arXiv ... yesterday !

□ Discusses simplest purely baryonic decays for all b-baryons

□ Most modes are out of reach until we get data with an upgraded LHCb detector

Best bets are

	Branching fraction	$\mathcal{A}_{CP} = \frac{\Gamma(\mathbf{B}_h \to \mathbf{B}_{l_1} \mathbf{B}_{l_2} \mathbf{B}_{l_3}) - \Gamma(\bar{\mathbf{B}}_h \to \bar{\mathbf{B}}_{l_1} \mathbf{B}_{l_2} \bar{\mathbf{B}}_{l_3})}{\Gamma(\mathbf{B}_h \to \mathbf{B}_{l_1} \bar{\mathbf{B}}_{l_2} \mathbf{B}_{l_3}) + \Gamma(\bar{\mathbf{B}}_h \to \bar{\mathbf{B}}_{l_1} \mathbf{B}_{l_2} \bar{\mathbf{B}}_{l_3})}$
$\Lambda_b^0 \to \Lambda p \overline{p}$	$(3.2^{+0.8}_{-0.3} \pm 0.4 \pm 0.7) \times 10^{-6}$	$(3.4 \pm 0.1 \pm 0.1 \pm 1.0)\%$
$\Xi_b^0 \to \Lambda p \overline{p}$	$(1.4 \pm 0.1 \pm 0.1 \pm 0.4) \times 10^{-7}$	$(-13.0 \pm 0.5 \pm 1.5 \pm 1.1)\%$
$\square_b \rightarrow Mpp$	$(1.4 \pm 0.1 \pm 0.1 \pm 0.4) \times 10$	$(-13.0\pm0.3\pm1.3\pm1.1)$

□ Striking difference for predicted threshold enhancement

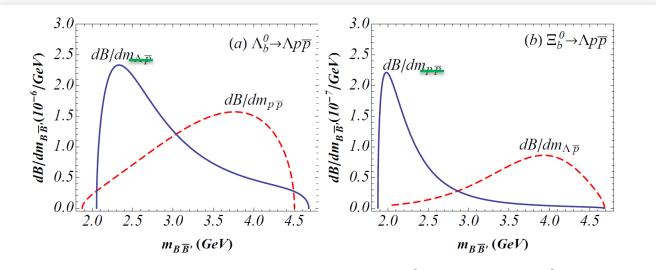
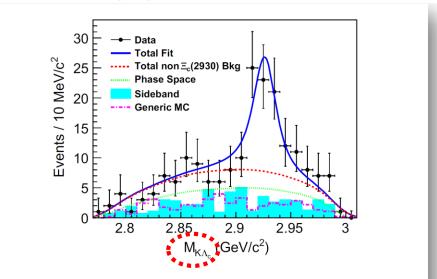


Figure 1: The dibaryon invariant mass spectra for the (a) $\Lambda_b^0 \to \Lambda p \overline{p}$ and (b) $\Xi_b^0 \to \Lambda p \overline{p}$ decays.

Spectroscopy with baryonic decays

□ b-hadron decays have been extensively used to study resonances and even exotics

- Many B \rightarrow D X decays used in B-factories and LHCb for excited D-meson spectroscopy
- E.g. $\Lambda_b^0 \rightarrow D^0 p \pi$ to study Λ_c^+ excited states (1701.07873v3 [hep-ex])
- Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi \ p \ K$ (PRL 115 (2015) 072001)
- Charm-full baryonic decays
- Etc.
- □ Charmless decays


also have a word to say here ! E.g.:

- Study of charmonium-like states
- Study of relatively little known
 - $\Lambda\overline{\Lambda}$ system (charmonium decays)
- Interesting modes:

 $B^{0,+}_{(s)} \to \Lambda \overline{\Lambda} (light meson)$ $\Lambda^{0}_{b}, \Xi^{0}_{b} \to \Lambda \overline{\Lambda} \Lambda$

- OK, this is looking into the future ;-)!

Observation of $\Xi_c(2930)^0$ and updated measurement of $B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$ at Belle

Fig. 4 The $M_{K^-\Lambda_c^+}$ distribution of the selected data candidates, with fit results superimposed. Dots with error bars are the data, the solid blue line is the best fit, the dashed red line is the total non- $\Xi_c(2930)$ backgrounds, the dotted green line is the phase space contribution, the shaded cyan histogram is from the normalized Λ_c^+ and $\bar{\Lambda}_c^-$ mass sidebands, and the dot-dashed magenta line is the sum of the MC-simulated contributions from the normalized $e^+e^- \rightarrow q\bar{q}$ and $\Upsilon(4S) \rightarrow B\bar{B}$ generic-decay backgrounds

Eur. Phys. J. C (2018) 78

Semileptonic decays

Semileptonic baryonic B decays

PRD 89, 011101 (2014)

 $\Box \text{ Belle found } 1^{\text{st}} \text{ evidence for decays } B^+ \rightarrow p \ \overline{p} \ l \ \nu$

with a combined significance of 3.2 σ (assuming e- μ lepton universality)

90% C.L. upper limit:

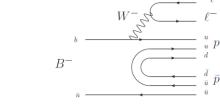
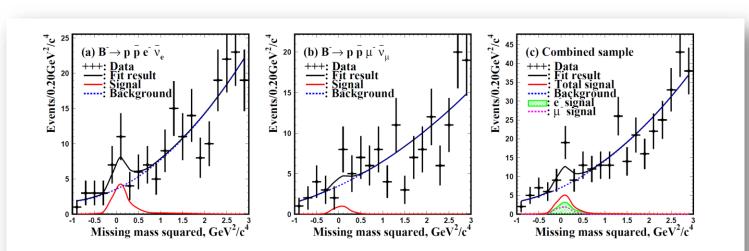



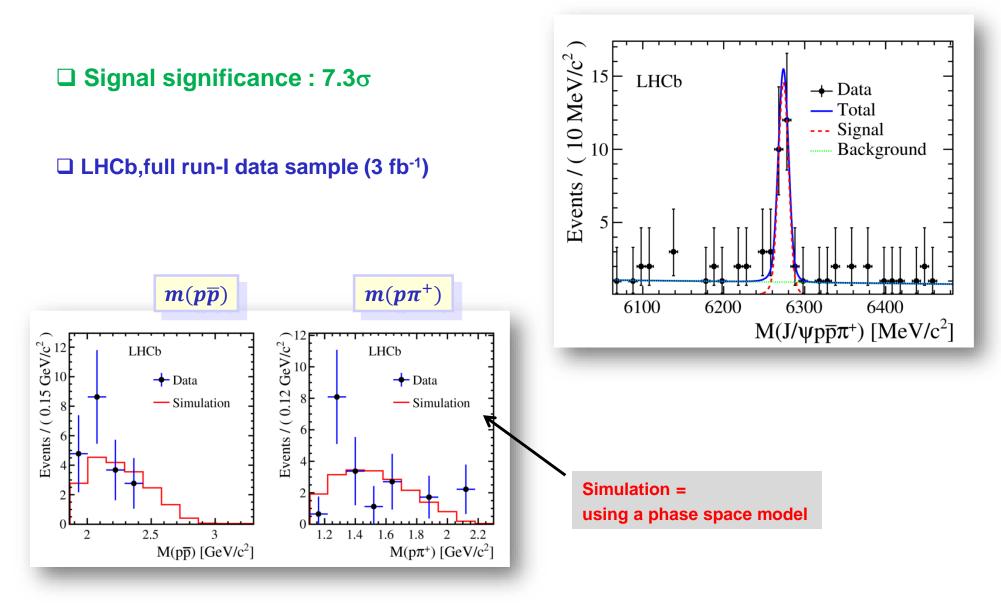
FIG. 1: Leading diagram for $B^- \to p\bar{p}\ell^-\bar{\nu}_\ell$ decay.

 $\mathcal{B}(B^- \to p\bar{p}\ell^-\bar{\nu}_\ell) < 9.6 \times 10^{-6}$

FIG. 2: Fitted missing mass squared distributions for (a) $B^- \to p\bar{p}e^-\bar{\nu}_e$, (b) $B^- \to p\bar{p}\mu^-\bar{\nu}_\mu$ and (c) the combined fit. Points with error bars represent data, while the curves denote various components of the fit: signal (solid red), total background (dashed blue), and the sum of all components (solid black). The hatched green area denotes the signal fit component from $B^- \to p\bar{p}e^-\bar{\nu}_e$ and the dashed purple curve that from $B^- \to p\bar{p}\mu^-\bar{\nu}_\mu$.

Can in the future be used to study lepton flavour universality

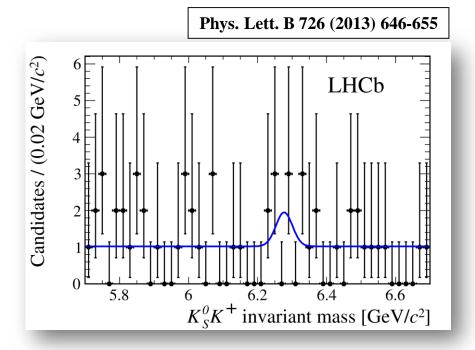
□ Can also help in the determination of Vub, see Phys. Lett. B 755 (2016) 418


ABSTRACT

We use the exclusive baryonic *B* decays to determine the Cabibbo–Kobayashi–Maskawa (CKM) matrix element V_{ub} . From the relation $|V_{ub}|^2/|V_{cb}|^2 = (\mathcal{B}_{\pi}/\mathcal{B}_D)\mathcal{R}_{ff}$ based on $B^- \to p\bar{p}\pi^-$ and $\bar{B}^0 \to p\bar{p}D^0$ decays, where $|V_{cb}|$ and $\mathcal{B}_{\pi}/\mathcal{B}_D \equiv \mathcal{B}(B^- \to p\bar{p}\pi^-)/\mathcal{B}(\bar{B}^0 \to p\bar{p}D^0)$ are the data input parameters, while \mathcal{R}_{ff} is the one fixed by the $B \to p\bar{p}$ transition matrix elements, we find $|V_{ub}| = (3.48^{+0.87}_{-0.63} \pm 0.40 \pm 0.07) \times 10^{-3}$ with the errors corresponding to the uncertainties from \mathcal{R}_{ff} , $\mathcal{B}_{\pi}/\mathcal{B}_D$ and $|V_{cb}|$, respectively. Being independent of the previous results, our determination of $|V_{ub}|$ has the central value close to those from the exclusive $\bar{B} \to \pi \ell \bar{v}_{\ell}$ and $\Lambda_b \to p \mu^- \bar{v}_{\mu}$ decays, but overlaps the one from the inclusive $\bar{B} \to X_u \ell \bar{v}_{\ell}$ with the current uncertainties. The extraction of $|V_{ub}|$ in the baryonic *B* decays is clearly very useful for the complete determination of the CKM matrix elements as well as the exploration of new physics.

Baryonic B_c decays

 $B_c^+ \to p \ \overline{p} \ \pi^+$


Recap – 1st observation of a baryonic B_c^+ decay PRL 113 (2014) 153003

Charmless (baryonic) B_c^+ decays - motivation

- □ Charmless B_c decays proceed exclusively through annihilation !
- □ Rather suppressed, but natural ground to study annihilation processes ...
- \Box LHCb already performed search for 2-body decay $B_c^+ \rightarrow K_S^0 K^+$
 - 90% C. L. upper limit

$$\frac{f_c}{f_u} \cdot \frac{\mathcal{B}(B_c^+ \to K_{\rm S}^0 K^+)}{\mathcal{B}(B^+ \to K_{\rm S}^0 \pi^+)} < 5.8 \times 10^{-2}$$

□ Searches for 3-body modes seem natural

 \Box Decays $B_c^+ \to K K \pi^+$ and $B_c^+ \to p \ \overline{p} \pi^+$ among simplest modes

- Due to Cabibbo suppression $\left|\frac{V_{us}}{V_{ud}}\right| \sim 0.2$, final states with no net strangeness dominate

Search for $B_c^+ o p \ \overline{p} \ \pi^+$

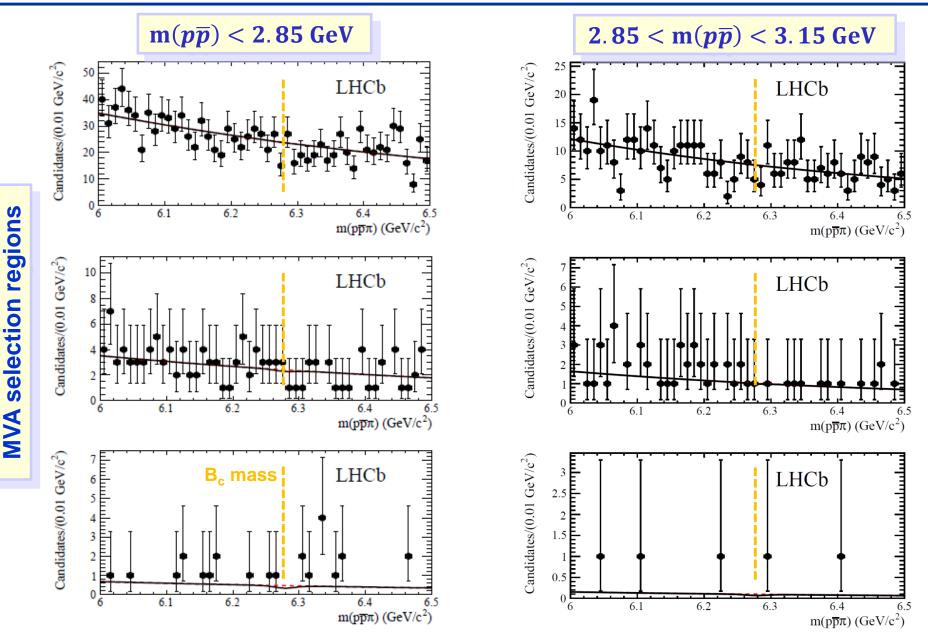
Motivation

 \Box 1st search for a charmless baryonic B_c^+ decay

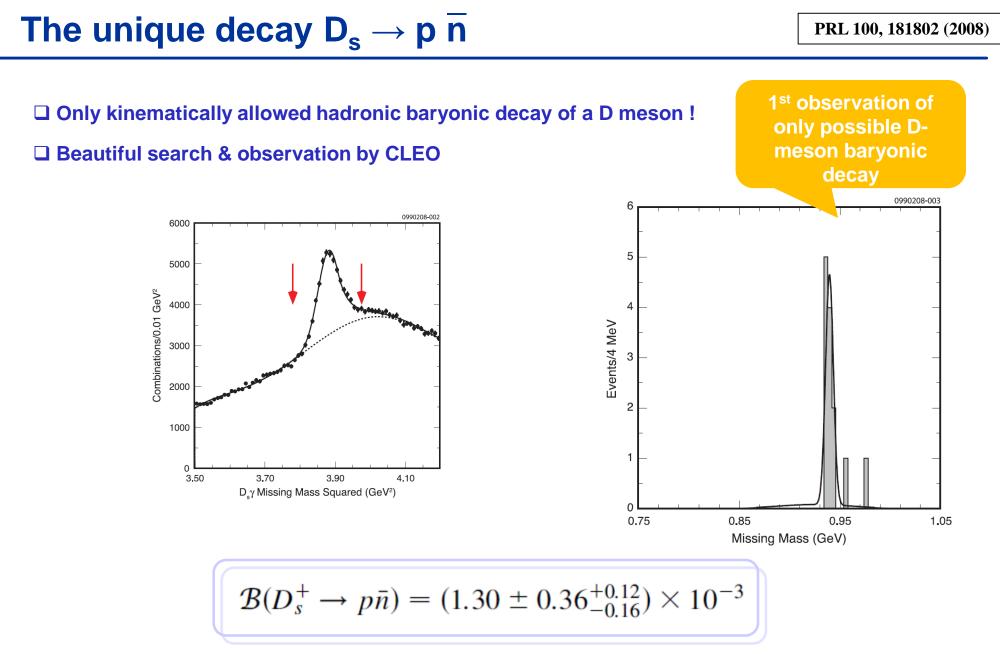
Analysis

- □ Full run-I data sample (3 fb⁻¹)
- \Box Branching fraction relative to that of $B^+ o p \ \overline{p} \ \pi^+$
- Measurement sensitivity enhanced by considering 3 MVA regions
- □ 95% C.L. upper limit

$$\frac{f_c}{f_u} \times \mathcal{B}(B_c^+ \to p \bar{p} \pi^+) < 3.6 \times 10^{-8}$$


- In the charmless region ${
 m m}(p\overline{p}) < 2.85~{
 m GeV}$, i.e. in annihilation region
- In the kinematic region $p_T(B) < 20$ GeV and region 2.0 < y(B) < 4.5

A broad study of charmless B_c decays requires the LHCb upgrade ...


Eduardo Rodrigues

PLB 759 (2016) 313-321

Search for $B_c^+ \to p \ \overline{p} \ \pi^+$

Baryonic D-meson decays

□ BF was naively expected to be of order 10⁻⁶ !

LPNHE Workshop, Paris, 6 June 2018

□ Only semileptonic baryonic D-meson decay physically allowed !

 $m_{D_s^+} - 2m_p \approx 82 \text{ MeV}$

Final state only accessible via final-state rescattering

 Consider meson with comparable amount of lightand strange-quark components to alleviate
 OZI suppression

- Meson exchanges from η , η ', f0(980), X(1835)

Branching fraction predicted in the range 10⁻⁹ – 10⁻⁸

LHCb can do it !

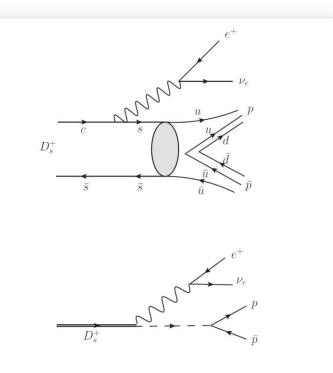


FIG. 1. Diagrams for the $D_s^+ \to p\bar{p}e^+\nu_e$ decay via meson exchanges. The upper panel depicts the quark diagram with a bulk denoting the neutral meson with $q\bar{q}$ and $s\bar{s}$ components, while the lower one is the meson exchange (denoted by dashed line) diagram at the hadron level.

Final remarks

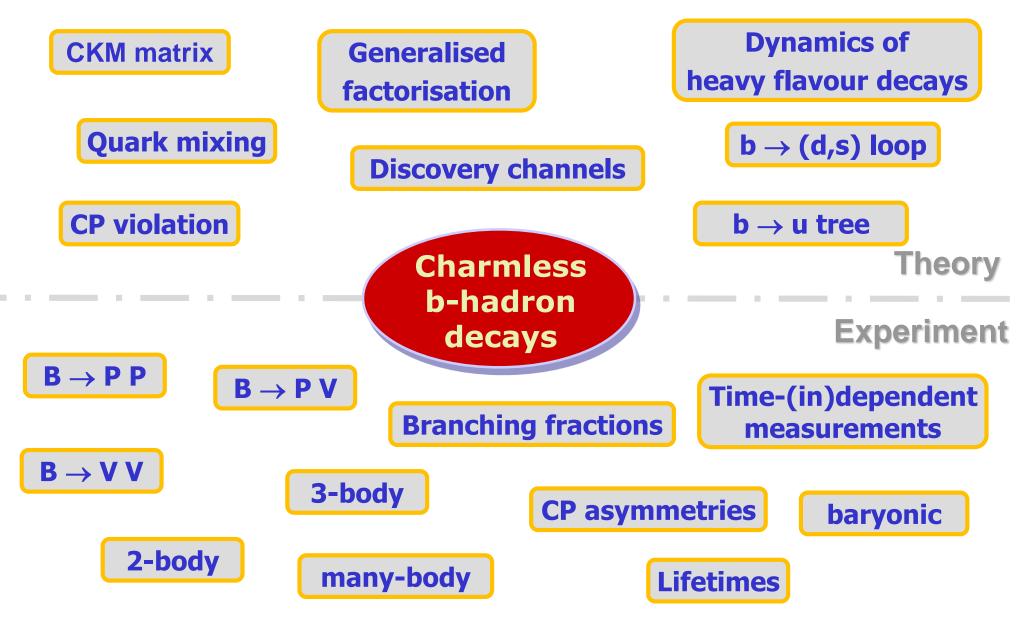
In short

□ LHCb is very active in the study of charmless b-hadron decays

□ In particular, it has been providing a plethora of important results with baryonic decays

Baryonic B decays still surprising us after almost 2 decades since first interest by community

Run II is providing a lot more statistics


□ The LHCb detector and data collection flow is much improved also !

□ Expect a lot and hope for surprises !

□ Some studies will require the upgraded LHCb detector ...

Back-up slides Back-nb slides

Charmless b-hadron decays programme (not comprehensive)

LPNHE Workshop, Paris, 6 June 2018

 \Box 2-body baryonic B decays are rather suppressed \Rightarrow need LHCb, as not seen @ B factories

- □ 1st evidence for $B^0 \rightarrow p \overline{p}$ with 2011 data analysis [JHEP 10 (2013) 005]
- \Box 1st observation of a 2-body charmless baryonic mode: $B^+ \rightarrow p \overline{\Lambda}(1520)$ [PRL 113, 141801 (2014)]
- \Rightarrow Important to confirm and/or improve knowledge of these very rare decays $B^0_{(s)} \rightarrow p \ \overline{p}$
- $\Rightarrow B^+ \rightarrow p \overline{\Lambda}$ seems like the next obvious decay mode to look for

□ Phenomenologically speaking, the B⁰ → p p̄ BF measured in the 2011 data analysis was yet smaller than expected
 ⇒ raised interest:
 most recent calculations explain a BF ~ 10⁻⁸ for the B⁰ mode
 [Phys. Rev. D91 (2015) 077501; Phys. Rev. D91 (2015) 036003]

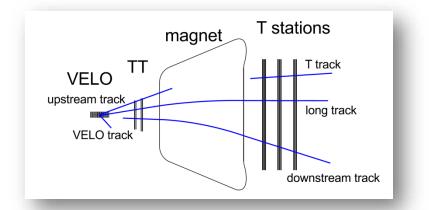
Analysis strategy

 $B_s^0 \rightarrow p \overline{\Lambda} K^-$

lacksquare Branching fraction measured relative to normalisation mode $B^0 o p \ \overline{\Lambda} \ \pi^-$

- Topologically identical decay, large branching fraction

$$\mathcal{B}(B^0_s \to p\overline{\Lambda}K^-) + \mathcal{B}(B^0_s \to \overline{p}\Lambda K^+) = \frac{f_d}{f_s} \frac{N(B^0_s \to p\overline{\Lambda}K^-)}{N(B^0 \to p\overline{\Lambda}\pi^-)} \frac{\epsilon_{B^0 \to p\overline{\Lambda}\pi^-}}{\epsilon_{B^0_s \to p\overline{\Lambda}K^-}} \mathcal{B}(B^0 \to p\overline{\Lambda}\pi^-)$$


□ Similar selection for both decay modes

Data

Analysis on full run-l data sample

□ Data split according to year and V⁰ reconstruction category (*long* or *downstream* tracks)

- Studies proved a viable procedure to merge all subsamples for the mass fit
- □ Decay chain fitted with V⁰ mass constrained

Background studies

 \Box Non resonant decays mode $B \rightarrow p \ \overline{p} \ \pi h \Rightarrow$ suppressed by Λ selection

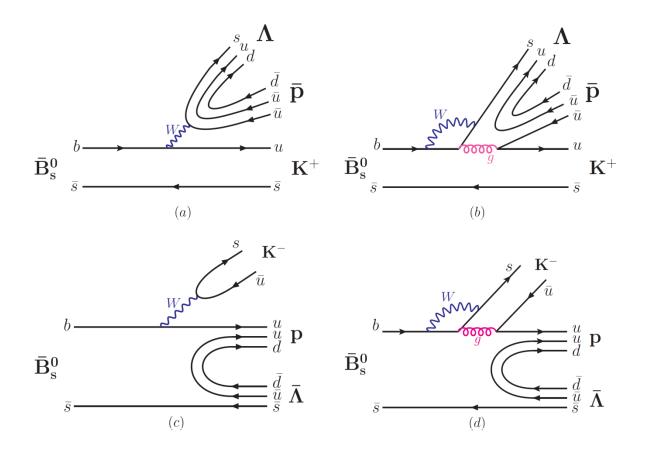
□ Resonant decays:

- Charmonia decaying to $p \ \overline{p} \Rightarrow$ suppressed by Λ selection
- Final states with a K_s instead of a Λ baryon \Rightarrow no contribution from such decays found in data
- **Cross-feed from misidentification:**
 - Pion-kaon misID between signal and control modes \Rightarrow crucial in fits since part of signal model
 - Proton-pion/kaon misID from $\Lambda_b \rightarrow \Lambda p \ \overline{p} \implies$ suppressed thanks to small branching fraction

& small tails into signal region

□ Partially reconstructed backgrounds:

- $B^0_{(s)} \rightarrow p \,\overline{\Sigma}{}^0 \,h^- \Rightarrow$ can sneak under signal peaks given small Σ -L mass difference ~ 77 MeV
- $B^0 \rightarrow p \overline{\Lambda} \rho^-$, $B_s \rightarrow p \overline{\Lambda} K^* \Rightarrow$ largely suppressed by selection


Fit strategy

 \Box Simultaneous fit to the 8 spectra : 2 final states x 2 years x 2 Λ reconstruction categories

$B_s^0 \rightarrow p \overline{\Lambda} K^-$ pheno paper – Feynman diagrams

PLB 767 (2016) 205

 $\Box B^{0} \to p \overline{\Lambda} \pi^{-} \text{ is flavour-specific, unlike } B^{0}_{s} \to p \overline{\Lambda} K^{-} :$ (in some analogy with $B^{0}_{s} \to D^{+}_{s} \pi^{-}$ and $B^{0}_{s} \to D^{+}_{s} K^{-}$)

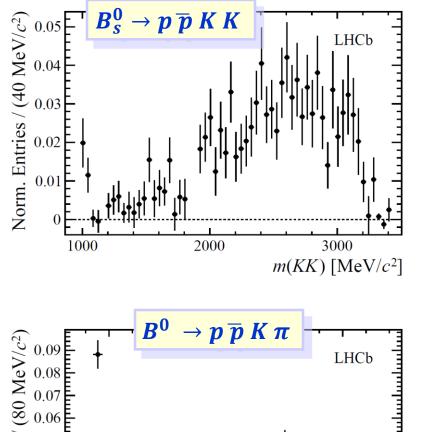
(Not a comprehensive list of diagrams)

FIG. 1. Feynman diagrams for three-body baryonic \bar{B}_s^0 decays, where (a,b) depict $\bar{B}_s^0 \to \bar{p}\Lambda K^+$ while (c,d) depict $\bar{B}_s^0 \to p\bar{\Lambda}K^-$. Eduardo Rodrigues LPNHE Workshop, Paris, 6 June 2018

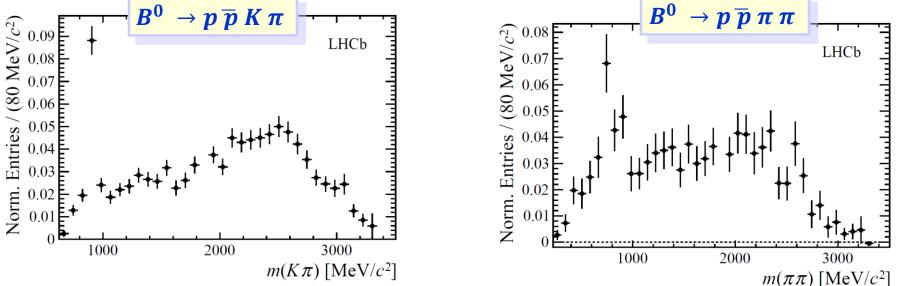
47/41

Branching fractions :

$$\mathcal{B}(\bar{B}^0_s \to \bar{p}\Lambda K^+) = (3.75 \pm 0.81^{+0.67}_{-0.31} \pm 0.01) \times 10^{-6}$$
$$\mathcal{B}(\bar{B}^0_s \to p\bar{\Lambda}K^-) = (1.31 \pm 0.32^{+0.22}_{-0.10} \pm 0.01) \times 10^{-6}$$
$$\mathcal{B}(\bar{B}^0_s \to p\bar{\Lambda}\pi^-) = (2.79 \pm 1.37^{+0.64}_{-0.30} \pm 0.17) \times 10^{-7}$$

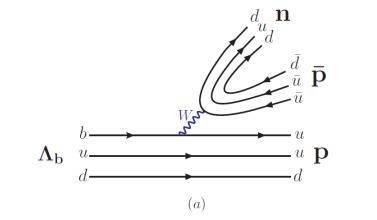

(Uncertainties from form factors, non-factorizable effects, CKM matrix elements)

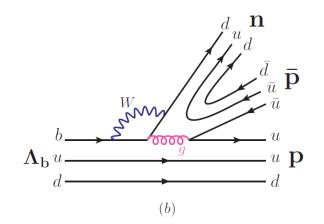
BF relations :

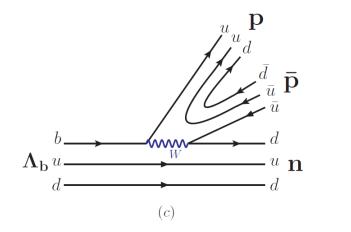

$$\begin{aligned} \mathcal{B}(\bar{B}^0_s \to \bar{p}\Lambda K^+) &\simeq (f_K/f_\pi)^2 (\tau_{B^0_s}/\tau_{B^0}) \mathcal{B}(\bar{B}^0 \to \bar{p}\Lambda \pi^+) \\ \frac{\mathcal{B}(\bar{B}^0_s \to p\bar{\Lambda}\pi^-)}{\mathcal{B}(\bar{B}^0_s \to p\bar{\Lambda}K^-)} &\simeq \frac{\mathcal{B}(B^- \to p\bar{p}\pi^-)}{\mathcal{B}(B^- \to p\bar{p}K^-)} \end{aligned}$$

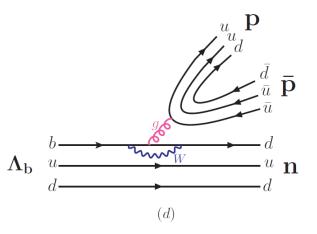
$B^{0}_{(s)} \rightarrow p \ \overline{p} \ h^+ \ h'^- - 2$ -particle projections

PRD 96, 051103(R) (2017)

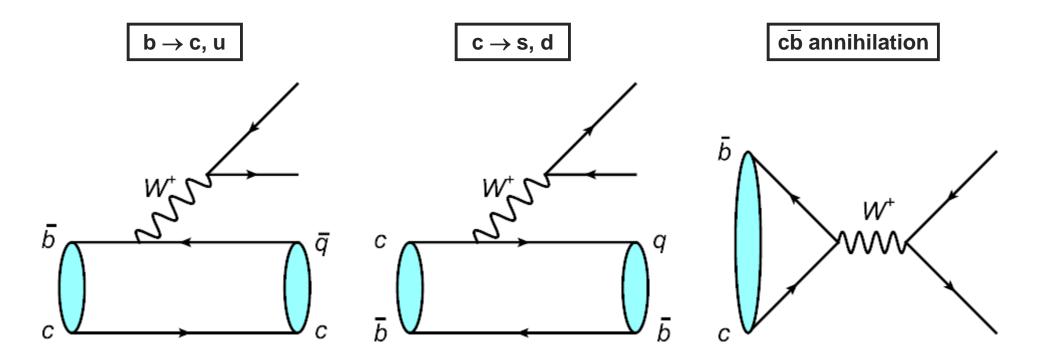

- Efficiency-corrected and background-subtracted sPlot'ed dist'ons
- Vector mesons clearly visible in all 3 distributions
- □ A proper study would require an amplitude analysis ...




LPNHE Workshop, Paris, 6 June 2018


Charmless b-baryon decays

$\Lambda_b \rightarrow p \ \overline{p} \ n$ – Feynman diagrams



Assume top-left diagram is dominating, and bottom-left diagram is main non-factorisable effect, expected to be small

Charmless B_c decays proceed exclusively through annihilation !
 Rather suppressed but natural ground to study annihilation processes ...