FSI in hadronic B decay

Patricia C. Magalhães

Technical University of Munich - TUM

- 3-body "pure light hadronic" heavy meson decay - dynamics, issues,...
- Importance of the FSI in low and high mass
- How to use informations from D meson decay? ex: $D^{+} \rightarrow K^{-} K^{+} K^{-}$
- How to improve the B amplitude analysis ?

$$
\text { ex: } B^{+} \rightarrow K^{-} K^{+} K^{-}
$$

- what's next?
- D and B three-body HADRONIC decays are dominated by resonances
- spectroscopy
- information of MM interactions \longrightarrow no $K \bar{K}$ data available
- study of CP-Violation (strong phase needed) \longrightarrow can lead to new physics
- new high data sample from LHCb \longrightarrow more to came from LHCb and Belle II
\longrightarrow deserve better models

```
isobar model
- violates two-body unitarity ( }2\mathrm{ res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !
```

- can we learn something from D decays?

$0 \neq$ scales $!!!\rightarrow$ similar FSI
- 2-body theories "works" up to mD
- B phase-space $\rightarrow+$ FSI possibilities charm-penguins,

heavy meson decay

- dynamics

- weak primary vertex (W)

- Final State Interactions (FSI)

heavy meson decay

- dynamics
 to extract information from data we need an amplitude MODEL
- weak primary vertex (W)

- Final State Interactions (FSI)

heavy meson decay

- dynamics
 to extract information from data we need an amplitude MODEL
- weak primary vertex (W)

- QCD factorization approach
\rightarrow not precise for 3-body not allow all kinds of FSI and 3-body NR
- Final State Interactions (FSI)

heavy meson decay

- dynamics
 to extract information from data we need an amplitude MODEL
- weak primary vertex (W)

- QCD factorization approach
\rightarrow not precise for 3-body not allow all kinds of FSI and 3-body NR
- Final State Interactions (FSI)

- 2-body is crucial

O full unitarity: Faddeev, Khury-Trieman, triangles

- massive localized Acp
- Charge Parity Violation (CPV):

$$
A_{M \rightarrow f}=A_{1} e^{i\left(\delta_{1}-\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}-\phi_{2}\right)}
$$ $\left|A_{M \rightarrow f}\right|^{2}-\left|A_{\bar{M} \rightarrow \bar{f}}\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right) \neq 0$

two \neq weak and strong phases

- BSS model

LHCb PRD90 (2014) 112004
not enough !!!
strong phase

factorization techniques

- describes well two-body Br; - do not describe Acp data;
- FSI \rightarrow strong phase Wolfenstein PRD43 (I99I) I5I

how to improve ANA in B decays?

- FSI
- low energy MM rescattering, coupled-channels and resonances
- 3-body + NR effects
two-body theoretical models (unitary \& analicity) \rightarrow dispersion relations and ChPT limited to $\sim 1-2 \mathrm{GeV}$
\rightarrow how far we really need 2-body amplitude?! all B phase-space ?
- FSI
- low energy MM rescattering, coupled-channels and resonances
- 3-body + NR effects
two-body theoretical models (unitary \& analicity) \rightarrow dispersion relations and ChPT limited to $\sim 1-2 \mathrm{GeV}$
\rightarrow how far we really need 2 -body amplitude?! all B phase-space ?
- what do we have in the marked ?
L. Benoit talk
- $(2+1)$ parametrization with QCDF + scalar and vector meson-meson FF ; Boito et al
- 3- FSI at low energy: with triangle loops PCM et. al. or Khuri-Treiman Kubis et. al [Bonn] [Brazil effort] \longrightarrow limited to very low E
- 3-b FSI high energy: charm penguins Bediaga, Fredrico \& PCM
- K-matrix: 2-b pole + polynomial with free parameter modulated by a production; $\rightarrow(2+1)$ difficult to extract informations
- GLASS, LASS use directly 2-body phases for 3-body process

$$
\longrightarrow(2+I)
$$

2-body x 3-body phases

- Can we extract two-body information from 3-body data? Not directly!
- $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \rightarrow$ different S - wave phase from $K^{-} \pi^{+}$

- $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \quad$ different phases!

- 2-body amplitude: spin and isospin well defined!
- 3-body data: only spin! $\& \neq$ dynamics (weak vertex, FSI, 3rd particle, ...)

There is no direct connection between phases of the 3-body decay amplitudes and two-body scattering amplitudes

- 2-body is a crucial ingredient \rightarrow limited from theory to low E
\searrow limited scattering data
\rightarrow no KK scattering data and no theoretical model! just extensions
use 3-body data to obtain information from two-body!
ex: a model for $D^{+} \rightarrow K^{-} K^{+} K^{-}$that can predict the KK scattering

- alternative to isobar model in amplitude analysis arXiv: I805.11764
- hypotheses that annihilation is dominant

- everything can be described by ChPT Lagrangian
$\bigcirc A_{a b}^{J I} \longrightarrow$ unitary scattering amplitude for $a b \rightarrow K^{+} K^{-}$
\rightarrow parameters have physical meaning: masses and coupling constants

Triple - M

$K \bar{K}$ scattering amplitude
isospin decomposition $[J, I=(0,1),(0,1)]$

Triple - M

Chiral symmetry

$K \bar{K}$ scattering amplitude
o isospin decomposition $[J, I=(0,1),(0,1)]$

Chiral symmetry

- $K \bar{K}$ scattering amplitude

O isospin decomposition $[J, I=(0,1),(0,1)]$

Chiral symmetry

$K \bar{K}$ scattering amplitude
O isospin decomposition $[J, I=(0,1),(0,1)]$

- non-resonant: beyond $(2+\mathrm{I})$ is a 3-body amplitude
- FSI: coupled-channel meson-meson from ChPTR Lagrangian
- intensity of each component is predict by theory $\longrightarrow \neq$ isobar model
- Toy studies

\rightarrow parameters with physical meaning (ChPT)
\rightarrow can disentangle a_{0} and f_{0}
\rightarrow couple channel structure: cannot be ignored
arXiv: I805.II764
- non-resonant: beyond $(2+\mathrm{I})$ is a 3-body amplitude
- FSI: coupled-channel meson-meson from ChPTR Lagrangian
- intensity of each component is predict by theory
$\rightarrow \neq$ isobar model
- Toy studies

\rightarrow parameters with physical meaning (ChPT)
\rightarrow can disentangle a_{0} and f_{0}
\rightarrow couple channel structure: cannot be ignored

Fitting data we can predict KK scattering phase
arXiv: I805.II764

B decays

- huge phase-space

- FSI at low and high energy \qquad room for producing all sorts of particles
- localised CPV
- low mass

Bediaga, Frederico, \& Lourenço PRD89(2014)094013

- high mass?

B decays

- huge phase-space

- FSI at low and high energy \longrightarrow room for producing all sorts of particles
- localised CPV
- low mass $\pi \pi \rightarrow K K$

Bediaga, Frederico, \& Lourenço PRD89(2014)094013

- high mass?

B decays

- huge phase-space

- FSI at low and high energy \longrightarrow room for producing all sorts of particles
- localised CPV
- low mass $\pi \pi \rightarrow K K$

> Bediaga, Frederico, \& Lourenço PRD89(2014)094013

- high mass?

B decays

- huge phase-space

- FSI at low and high energy \longrightarrow room for producing all sorts of particles
- localised CPV
- low mass $\pi \pi \rightarrow K K$

> Bediaga, Frederico, \& Lourenço PRD89(2014)094013

- high mass?

$B^{ \pm} \rightarrow K^{+} K^{-} K^{+}$
charm FSI: $B \rightarrow 3 h, B_{c} \rightarrow 3 h, B \rightarrow K^{*} \mu \mu, \ldots$

PLB 780 (2018) 357

Cabibbo favoured $V_{b c}$

- charm FSI: $B \rightarrow 3 h, B_{c} \rightarrow 3 h, B \rightarrow K^{*} \mu \mu, \ldots$
investigate the charm contribution to $B^{ \pm} \rightarrow K^{+} K^{-} K^{+}$

PLB 780 (2018) 357
Cabibbo favoured $V_{b c}$

- $B^{ \pm} \rightarrow h h h$ highest statistic 109k LHCb
- nonresonant \rightarrow all phase-space
- dominated by penguin

- presence of charm resonances:
$\chi_{c 0} \quad J / \psi$

- charm FSI: $B \rightarrow 3 h, B_{c} \rightarrow 3 h, B \rightarrow K^{*} \mu \mu, \ldots$
investigate the charm contribution to $B^{ \pm} \rightarrow K^{+} K^{-} K^{+}$

PLB 780 (2018) 357
Cabibbo favoured $V_{b c}$

- $B^{ \pm} \rightarrow h h h$ highest statistic 109k LHCb
- nonresonant \rightarrow all phase-space
- dominated by penguin

- presence of charm resonances:

$$
\chi_{c 0} J / \psi
$$

Charm penguin in B decay

- different QCD regimes in DP

Krünkl, Mannel \&Virto, NPB 899 (2015) 247

$$
\longrightarrow B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}
$$

Charm penguin in B decay

- different QCD regimes in DP

Krünkl, Mannel \&Virto, NPB 899 (2015) 247

$$
\leadsto B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}
$$

- perturbative: region I

Charm penguin in B decay

- different QCD regimes in DP

Krünkl, Mannel \&Virto, NPB 899 (2015) 247

$$
\leadsto B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}
$$

- perturbative: region I

- nonperturbative: region II

identify their signatures to amplitude analyses with LHCb data
- loop

$$
\begin{aligned}
& \operatorname{Re\Pi }(x)=-\frac{1}{6}\left\{\frac{5}{3}+\frac{4}{x}-\left(1+\frac{2}{x}\right)\left[\sqrt{1-\frac{4}{x}} \ln \left(\frac{1+\sqrt{1-4 / x}}{1-\sqrt{1-4 / x}}\right) \Theta\left[1-\frac{4}{x}\right]\right.\right. \\
& \left.\left.\quad+2 \sqrt{\frac{4}{x}-1} \operatorname{arcot}\left[\sqrt{\frac{4}{x}-1}\right] \Theta\left[\frac{4}{x}-1\right]\right]\right\} \\
& \left.I_{\text {mII }(x)}\right)=-\frac{\pi}{6}\left(1+\frac{2}{x}\right) \sqrt{1-\frac{4}{x}} \Theta\left[1-\frac{4}{x}\right]
\end{aligned}
$$

Gerard\& Hou PRD43 (1991) 2909

\bar{u}

many possible excitations \rightarrow average of charm mass

$$
A_{\text {parton }}=\int_{m c_{m i n}}^{m c_{\max }} \Pi(s) \frac{1}{2 \pi \Gamma^{2}} e^{\frac{\left(m-m_{c 0}\right)^{2}}{2 \Gamma^{2}}}
$$

- loop

$$
\begin{aligned}
& \operatorname{Re\Pi }(x)=-\frac{1}{6}\left\{\frac{5}{3}+\frac{4}{x}-\left(1+\frac{2}{x}\right)\left[\sqrt{1-\frac{4}{x}} \ln \left(\frac{1+\sqrt{1-4 / x}}{1-\sqrt{1-4 / x}}\right) \Theta\left[1-\frac{4}{x}\right]\right.\right. \\
& \left.\left.\quad+2 \sqrt{\frac{4}{x}-1} \operatorname{arcot}\left[\sqrt{\frac{4}{x}-1}\right] \Theta\left[\frac{4}{x}-1\right]\right]\right\} \\
& \operatorname{Im\Pi }(x)=-\frac{\pi}{6}\left(1+\frac{2}{x}\right) \sqrt{1-\frac{4}{x}} \theta\left[1-\frac{4}{x}\right]
\end{aligned}
$$

Gerard\& Hou PRD43 (I99I) 2909

\bar{u}

many possible excitations \rightarrow average of charm mass

$$
A_{\text {parton }}=\int_{m c_{\min }}^{m c_{\max }} \Pi(s) \frac{1}{2 \pi \Gamma^{2}} e^{\frac{\left(m-m_{0}\right)^{2}}{2 \Gamma^{2}}}
$$

- Amplitude in region $1 B \rightarrow 3 \pi$
from Mannel et al

- Kernel of interaction

$$
A_{p}(s)=T(s)\left(M_{B}^{2}-s\right) f_{+}(s)
$$

$$
T(s) \equiv A_{\text {parton }}
$$

$f_{+}(s)=\frac{1}{1-s / M_{B s}^{* 2}} \rightarrow B \rightarrow K$
vector form factor

- gaussian parameters should be fitted to data

$$
\frac{1}{2 \pi \Gamma^{2}} e^{\frac{\left(m-m_{c 0}\right)^{2}}{2 \Gamma^{2}}} \rightarrow \begin{gathered}
\Gamma=0.02 \mathrm{GeV} \\
m_{c 0}=1.5 \mathrm{GeV}
\end{gathered}
$$

- gaussian parameters should be fitted to data

$$
\frac{1}{2 \pi \Gamma^{2}} e^{\frac{\left(m-m_{c 0}\right)^{2}}{2 \Gamma^{2}}} \rightarrow \begin{gathered}
\Gamma=0.02 \mathrm{GeV} \\
m_{c 0}=1.5 \mathrm{GeV}
\end{gathered}
$$

- gaussian parameters should be fitted to data

$$
\frac{1}{2 \pi \Gamma^{2}} e^{\frac{\left(m-m_{c 0}\right)^{2}}{2 \Gamma^{2}}} \rightarrow \begin{gathered}
\Gamma=0.02 \mathrm{GeV} \\
m_{c 0}=1.5 \mathrm{GeV}
\end{gathered}
$$

$\xrightarrow{\longrightarrow} \max$ at $\sim 3 \mathrm{GeV}$

can change the inference pattern
zero bellow threshold

:... factor for $W^{+} \rightarrow D^{0} K^{+}$

- $\operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim \mathbf{1 \%} \rightarrow \mathbf{1 0 0 0} \mathbf{x} \operatorname{Br}[B \rightarrow K K K]$
- hadronic loop \rightarrow three-body FSI - introduce new complex structures

$D^{0} \overline{D^{0}} \rightarrow K^{+} K^{-}$scattering amplitude

- freedom to chose $D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$parameters \rightarrow fix by data!

\longrightarrow zero at threshold
discontinuity at threshold

hadronic loop

- total amplitude $A=i C_{O} T_{D D \rightarrow K K} A_{P}^{h}$

hadronic loop

- total amplitude $A=i C_{O} T_{D D \rightarrow K K} A_{P}^{h}$

hadronic loop

- total amplitude $A=i C_{O} T_{D D \rightarrow K K} A_{P}^{h}$

final remarks

- $B \rightarrow K K K$ charm penguins

- wide amplitude spread in the center of the Dalitz plane

\rightarrow NR population observed!
- amplitude: two narrow peaks in between a zero (threshold) \rightarrow superposition of triangles
- phase: change sign in a region close where data shows a CP asymmetry change in sign!

(hadronic)

$$
0
$$

FSI mechanism to produce CP asymmetry at high mass

- interference between: triangles \& partonic \& other NR sources \& resonances
\rightarrow can shift the position of the CP asymmetry sign change
\longrightarrow should be tested in data ANA!

final remarks

- FSI \longrightarrow superposition of resonant and non-resonant at low and high energy
- different weak vertices topologies for same FS \rightarrow how to add them?
- need to know about short distance!
- to improve ANA and learn from data we need:
\rightarrow good analytic and unitary 2-body coupled-channels;
- with LASS/GLASS and Matriz K we don't learn much...
\rightarrow B-decays must include the diff QCD regime dynamics;
- NR charm penguins!!
\rightarrow NR 2 and 3-body effects;
- at least a way to parametrize this different from 2-body without adding phases

How to do that? ...

TRR110 Workshop - Amplitudes for Three-Body Final States

11-13 July 2018
 MIAPP
 Europe/Berlin timezone

MIAPP

Campus of Max-Planck Society Ahornstr
85748 Garching ~Munich Germany

Patricia Magalhães
Bastian Kubis
Christoph Hanhart Norbert Kaiser
Stephan Paul

TRR110 Workshop - Amplitudes for Three-Body Final States

11-13 July 2018
 MIAPP
 Europe/Berlin timezone

MIAPP

Campus of Max-Planck Society Ahornstr
85748 Garching ~Munich Germany

Patricia Magalhães
Bastian Kubis
Christoph Hanhart Norbert Kaiser
Stephan Paul

Extra slides

FSI in three-body decay :

I. Bediaga, I., T. Frederico, T. and O. Louren Phys. Rev. D89, 094013(2014),[arXiv:1307.8164]
J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico and O. Louren, Phys. Rev. D92, 054010 (2015) [ArXiv:1506.08332].

PC Magalhães and I Bediaga arXiv:1512.09284;
P. C Magalhães and R.Robilotta, Phys. Rev. D92 094005 (2015) [arXiv:1504.06346] ; P.C.Magalhães et. al. Phys. Rev. D84 094001 (2011) [arXiv:1105.5120]; P.C. Magalhães and Michael C. Birse, PoS QNP2012, 144 (2012).
I. Caprini, Phys. Lett. B 638468 (2006).

Bochao Liu, M. Buescher, Feng-Kun Guo, C. Hanhart, and Ulf-G. Meissner, Eur. Phys. J. C 6393 (2009).
F Niecknig and B Kubis - JHEP 10142 (2015) ArXiv:1509.03188
H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. D 84, 114019 (2011).
S. X. Nakamura, arXiv:1504.02557 (2015).
J. -P. Dedonder, A. Furman, R. Kaminski, L. Lesniak, L. and B. Loiseau, Acta Phys. Polon. B42, 2013 (2011), [Arxiv: 1011.0960]
J.-P. Dedonder, R. Kaminski, L. Lesniak, and B. Loiseau, , Phys. Rev.D89, 094018 (2014).

Donoghue et al., Phys. Rev Letters 77(1996) 2178;
Suzuki,Wolfenstein, Phys. Rev. D 60 (1999)074019;
Falk et al. Phys. Rev. D 57,4290(1998);
Blok, Gronau, Rosner, Phys. Rev Letters 78, 3999 (1997).

Charm Penguin

if needed
Kpp

- loop contribution

$$
A_{P}^{h}=i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\Delta_{D^{0}}+2 \Delta_{\overline{D^{0}}}-2 s_{23}+3 M_{K}^{2}+M_{B}^{2}-l^{2}}{\Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{D *}\left[l^{2}-m_{B^{*}}\right]}
$$

- two threshold effect

discontinuity at threshold allow CPV below threshold
- not well understand on literature
- important as FSI in B two-body decays

Donoghue et al., PRL 77(1996)2178; Suzuki,Wolfenstein, PRD 60 (1999)0740I9;
Falk et al. PRD 57,4290(1998);
Blok, Gronau, Rosner, PRL 78, 3999 (1997).

- phenomenological amplitude
- unitarity of the S-matrix $\quad S=\left(\begin{array}{cc}\eta e^{2 i \alpha} & \sqrt{1-\eta^{2}} e^{i(\alpha+\beta)} \\ -\sqrt{1-\eta^{2}} e^{i(\alpha+\beta)} & \eta e^{2 i \beta}\end{array}\right)$
- inspired in the damping factor of the S matrix i.e. $\pi \pi \rightarrow K K$

$$
\eta=\mathcal{N} \sqrt{s / s_{t h}-1} /\left(s / s_{t h}\right)^{2.5}
$$

$$
\begin{aligned}
& \text { KK: } e^{2 i \alpha}=1-\frac{2 i k_{1}}{\frac{c}{1-k_{1} / k_{0}}+i k_{1}}, \text { DD: } e^{2 i \beta}=1-\frac{2 i k}{\frac{1}{a}+i k} \\
& k=\sqrt{\frac{s-s_{t h}}{4}}, k_{1}=\sqrt{\frac{s-s_{t h 1}}{4}} \text { and } k_{0}=\sqrt{\frac{s_{0}-s_{t h}}{4}}
\end{aligned}
$$

$S_{\beta, \alpha}=\delta_{\beta, \alpha}+i t_{\beta, \alpha}$

D—>KKK

theory - $D^{+} \rightarrow K^{-} K^{+} K^{+}$

- $A_{a b}^{J I}$: unitary coupled-channel amplitude for $[J, I=(0,1),(0,1)]$

$$
\longrightarrow a b=\pi \pi, K \bar{K}, \eta \pi, \rho \pi, \eta \eta
$$

- solid theory to describe MM interactions at low energy

Gasser \& Leutwyler [Nucl. Phys. B250(1985)]

NLO: include resonances as a field Ecker, Gasser, Pich and De Rafael [Nucl. Phys. B32I(1989)]

$$
\begin{gathered}
\text { scalars } \\
\mathcal{L}_{S}^{(2)}=\frac{2 \dot{c}_{d}}{F^{2}} R_{0} \partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i}-\frac{4 \dot{c}_{m}}{F^{2}} B R_{0}\left(\sigma_{0} \delta_{i j}+\sigma_{8} d_{8 i j}\right) \phi_{i} \phi_{j} \\
\frac{2 c_{d}}{\sqrt{2} F^{2}} d_{i j k} R_{k} \partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i}-\frac{4 B c_{m}}{\sqrt{2} F^{2}}\left[\sigma_{0} d_{i j k}+\sigma_{8}\left(\frac{2}{3} \delta_{i k} \delta_{j 8}+d_{i 8 s} d_{j s k}\right)\right] \phi_{i} \phi_{j} R_{k}
\end{gathered}
$$

vectors

hadronization of Weak current

weak topologies

(1) \rightarrow (1) (1)

- tree level

color allowed

- both are doubly Cabibbo-suppressed
- hypotheses that annihilation is dominant

- separate the different energy scales:

$$
\mathcal{T}=\left\langle(K K K)^{+}\right| T\left|D^{+}\right\rangle=\underbrace{\left\langle(K K K)^{+}\right| A_{\mu}|0\rangle}_{\text {ChPT }}\langle 0| A^{\mu}\left|D^{+}\right\rangle .
$$

\longrightarrow know how to calculate everything

unitarized amplitude $P^{a} P^{b} \rightarrow P^{c} P^{d}$

- unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

- kernel $\mathcal{K}_{a b \rightarrow c d}^{(J, I)}$

resonance (NLO) + contact (LO)
- loops \rightarrow K-matrix approximation: only on-shell

$$
\begin{aligned}
& \left\{I_{a b} ; I_{a b}^{\mu \nu}\right\}=\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\left\{1 ; \ell^{\mu} \ell^{\nu}\right\}}{D_{a} D_{b}} \\
& D_{a}=(\ell+p / 2)^{2}-M_{a}^{2} \quad D_{b}=(\ell-p / 2)^{2}-M_{b}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\Omega}_{a b}^{S}=-\frac{i}{8 \pi} \frac{Q_{a b}}{\sqrt{s}} \theta\left(s-\left(M_{a}+M_{b}\right)^{2}\right) \\
& \bar{\Omega}_{a a}^{P}=-\frac{i}{6 \pi} \frac{Q_{a a}^{3}}{\sqrt{s}} \theta\left(s-4 M_{a}^{2}\right) \\
& Q_{a b}=\frac{1}{2} \sqrt{s-2\left(M_{a}^{2}+M_{b}^{2}\right)+\left(M_{a}^{2}-M_{b}^{2}\right)^{2} / s}
\end{aligned}
$$

- parameters from ChPT lagrangians $\rightarrow \neq$ meaning !
- masses:
$m_{\rho}, m_{a_{0}}, m_{s 0}, m_{s 1} \quad S U(3)$ singlet and octet
- coupling constants:

$$
g_{\rho}, g_{\phi} \quad c_{d}, c_{m}, \tilde{c_{d}}, \tilde{c_{m}}
$$

vector

Chiral symmetry

$$
T_{N R}=\left[\frac{C}{4}\left(M^{2}-M_{K}^{2}+m_{12}^{2}\right)+\frac{C}{4}\left(m_{13}^{2}-m_{23}^{2}\right)+(2 \leftrightarrow 3)\right]
$$

$$
C=\left\{\left[\frac{G_{F}}{\sqrt{2}} \sin ^{2} \theta_{C}\right] \frac{2 F_{D}}{F} \frac{M_{K}^{2}}{M_{D}^{2}-M_{K}^{2}}\right\}
$$

- comparing with isobar (constant)

real polynomial

no possible free parameter

- tree $D \rightarrow a b K^{+}$

$$
\left\langle U_{3}\left(K^{+}\right)\right| T_{(0)}^{(0,1)}|D\rangle=\left\{\Gamma_{(0) \pi 8}^{(0,1)}\left\langle U_{3}^{\pi 8}\right|+\Gamma_{(0) K K}^{(0,1)}\left\langle U_{3}^{K K}\right|\right\}
$$

$a_{0} \quad$ example $[J, I=0,1] \rightarrow \eta \pi, K K$

to avoid double counting!

$$
\begin{aligned}
\Gamma_{(0) \pi 8}^{(0,1)}=C & \left\{\left[\frac{2 \sqrt{2}}{\sqrt{3} F^{2}}\right] \frac{\left[-c_{d} P \cdot p_{3}+c_{m} M_{D}^{2}\right]}{m_{12}^{2}-m_{a_{0}}^{2}}\left[c_{d}\left(m_{12}^{2}-M_{\pi}^{2}-M_{8}^{2}\right)+2 c_{m} M_{\pi}^{2}\right]\right. \\
& \left.+\left[-\frac{\sqrt{3}}{\sqrt{2}}\left[M_{D}^{2} / 3-P \cdot p_{3}\right]\right]_{c}^{C}\right\} \\
\Gamma_{(0) K K}^{(0,1)}=C & \left\{\left[\frac{2}{F^{2}}\right] \frac{\left[-c_{d} P \cdot p_{3}+c_{m} M_{D}^{2}\right]}{m_{12}^{2}-m_{a_{0}}^{2}}\left[c_{d}\left(m_{12}^{2}-2 M_{K}^{2}\right)+2 c_{m} M_{K}^{2}\right]\right.
\end{aligned}
$$

$$
+\left[-\left.\frac{1}{2}\left[M_{D}^{2}-P \cdot p_{3}\right]\right|_{c} ^{C}\right\}
$$

one interaction

$$
\begin{aligned}
& \Gamma_{(1) \pi 8}^{(0,1)}=-\mathcal{K}_{\pi 8 \mid \pi 8}^{(0,1)}\left[\bar{\Omega}_{\pi 8}^{S}\right] \Gamma_{(0) \pi 8}^{(0,1)}-\mathcal{K}_{\pi 8 \mid K K}^{(0,1)}\left[\frac{1}{2} \bar{\Omega}_{K K}^{S}\right] \Gamma_{(0) K K}^{(0,1)} \quad \Gamma_{(1)}^{(0,1)}=\left[\begin{array}{c}
\Gamma_{(1) \pi 8}^{(0,1)} \\
\Gamma_{(1) K K}^{(0,1)}
\end{array}\right]=\left[\begin{array}{l}
1 \\
\Gamma_{(1) K K}^{(0,1)}=-\mathcal{K}_{\pi 8 \mid K K}^{(0,1)}\left[\bar{\Omega}_{\pi 8}^{S}\right] \Gamma_{(0) \pi 8}^{(0,1)}-\mathcal{K}_{K K \mid K K}^{(0,1)}\left[\frac{1}{2} \bar{\Omega}_{K K}^{S}\right] \Gamma_{(0) K K}^{(0,1)}
\end{array}\right)=M^{(0,1)} \Gamma_{(0)}^{(0,1)}
\end{aligned}
$$

infinity interactions

$$
\Gamma^{(0,1)}=\left\{1+M^{(0,1)}+\left[M^{(0,1)}\right]^{2}+\cdots\right\} \Gamma_{(0)}^{(0,1)} \quad \Longrightarrow \Gamma^{(0,1)}=\left[1-M^{(0,1)}\right]^{-1} \Gamma_{(0)}^{(0,1)}
$$

$a_{0} \quad$ example $[J, I=0,1] \rightarrow \eta \pi, K K$

$$
\begin{aligned}
& T^{(0,1)}=-\frac{1}{2}\left[\bar{\Gamma}_{K K}^{(0,1)}-\Gamma_{c \mid K K}^{(0,1)}\right] \\
& \rightarrow \quad \bar{\Gamma}_{K K}^{(0,1)}=\frac{\left(m_{12}^{2}-m_{a_{0}}^{2}\right)}{\left.D_{a_{0}}^{(} m_{12}^{2}\right)}\left[M_{21} \Gamma_{(0) \pi 8}^{(0,1)}+\left(1-M_{11}\right) \Gamma_{(0) K K}^{(0,1)}\right] \\
& D_{a_{0}}=\left(m_{12}^{2}-m_{a_{0}}^{2}\right)\left[\left(1-M_{11}\right)\left(1-M_{22}\right)-M_{12} M_{21}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.M_{11}=-\mathcal{K}_{\pi 8 \mid \pi 8}^{(0,1)} \bar{\Omega}_{\pi 8}^{S}\right] \\
& M_{12}=-\mathcal{K}_{\pi| | K K}^{(0,1)}\left[(1 / 2) \bar{\Omega}_{K K}^{S}\right] \\
& M_{21}=-\mathcal{K}_{\pi| | K K}^{(0,1)}\left[\bar{\Omega}_{\pi 8}^{S}\right] \\
& M_{22}=-\mathcal{K}_{K K \mid K K}^{(0,1)}\left[(1 / 2) \bar{\Omega}_{K K}^{S}\right]
\end{aligned}
$$

- only resonance

$$
\left.\begin{array}{l}
\begin{array}{l}
\bar{\Gamma}_{K K}^{(0,1)}=\frac{\left(m_{12}^{2}-m_{a_{0}}^{2}\right)}{D_{a_{0}}\left(m_{12}^{2}\right)} \Gamma_{(0) K K}^{(0,1)} \\
D_{a_{0}}(s)=\left(s-m_{a_{0}}^{2}\right)+i m_{a_{0}} \Gamma_{a_{0}}(s) \\
m_{a_{0}} \Gamma_{a_{0}}(s)=\frac{1}{8 \pi \sqrt{s}}\left\{\left[\frac{4}{3 F^{4}}\right]\left[c_{d}\left(s-M_{\pi}^{2}-M_{8}^{2}\right)+2 c_{m} M_{\pi}^{2}\right]^{2}\right.
\end{array} Q_{\pi 8} \\
\\
\\
\quad+\left[\frac{1}{F^{4}}\right]\left[c_{d}\left(s-2 M_{K}^{2}\right)+2 c_{m} M_{K}^{2}\right]^{2}
\end{array} Q_{K K}\right\} .
$$

$\longrightarrow \quad$ parameter: $\quad c_{d}, c_{m} m_{a_{0}}$ access two-body dynamics !

$D^{+} \rightarrow K^{-} K^{+} K^{+}$Triple- M

- $T=\left[T^{S}+T^{P}+(2 \leftrightarrow 3)\right] \quad T^{S}=\left[\frac{C}{4}\left(M_{D}^{2}-M_{K}^{2}+m_{12}^{2}\right)+T^{(0,1)}+T^{(0,0)}\right]$

$$
T^{P}=\left[\frac{C}{4}\left(m_{13}^{2}-m_{23}^{2}\right)+T^{(1,1)}+T^{(1,0)}\right] .
$$

- $A^{I J} \rightarrow$ prediction by Triple-M
- extend ChPT to non perturbative region \rightarrow parameter have different meaning $m_{S 1}=m_{S o}$
- parameter for Toy studies:

```
masses from PDG (GeV)
    \(m_{\rho}=0.776, m_{\phi}=1.019, \longrightarrow m_{S 1}=1.370 \mathrm{GeV}\)
\(m_{a 0}=0.960, m_{S o}=0.980\)
```

low energy couplings (GeV)
$\left[F, G_{V}\right]=[0.093,0.067]$ vectors
$\left[c_{d}, c_{m}\right]=[0.032,0.042]$ scalar octet
$\left[\tilde{c_{d}}, \tilde{c_{m}}\right]=[0.018,0.025]$ scalar singlet

[^0]\rightarrow all (I3) could be free in a fit to data

- amplitude with similar behave \neq phase
- not possible to extract $\mathrm{A}(\mathrm{J}, \mathrm{I})$ from data
- Triple-M disentangle \neq isospins in data

Toy results S-wave

- Triple-M predictions for A
- phase

- inelasticity

- importance of coupled-channels
- two resonances in the $(\mathrm{J}=0, \mathrm{I}=0)$ channel, preserving unitarity

- ρ and NR contributions are tiny in TM \rightarrow small in KK
- ϕ phases are \neq for $s>1.5$
- Triple-M predictions for A
- phase

- ϕ is the dominant channel
- $\phi \rightarrow \rho \pi$ inelasticity $\rightarrow 15 \%$ of the life-time
- $\rho \rightarrow \pi \pi \rightarrow$ constant inelasticity

final remarks

Triple-M

- annihilation weak topology dominance \longrightarrow ChPT multi-meson description
- non-resonant: beyond $(2+I)$ is a 3-body amplitude
- FSI: coupled-channel meson-meson from ChPTR Lagrangian
- intensity of each component is predict by theory $\longrightarrow \neq$ isobar model
- Toy studies

\rightarrow parameters have physical meaning from ChPT masses and coupling const. fix by fitting data
\rightarrow can disentangle a_{0} and f_{0}
\rightarrow couple channel structure: cannot be ignored although \neq is possible to extract 2-body phase from 3-body data with TM

Dalitz plot Toy

Triple-M Toy Dalitz plot

$$
D^{+} \rightarrow K^{-} K^{+} K^{-}
$$

Fit data with Triple-M
\rightarrow powerful tool to extract KK scattering S-wave

[^0]: additional PDG
 $\Gamma_{\phi \rightarrow K \bar{K}} \sim 3.54 \mathrm{MeV}$
 $\sin \theta=0.605(\phi-\omega)$ mixing

