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Maintenance of chromatin domains along mitosis 
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Llères et al. JCB. 2009 



Measuring chromatin compaction in an organism  



•  Compact genome (6 chr) 

•  Transparent 

•  High degree of conservation 

Frøkjær-Jensen et al, Nat Methods. 2012 
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1 SEX CHROMOSOME IMBALANCE
IN C. elegans

C. elegans exists as two sexes that are genetically distin-
guished by their X-chromosome complement. XX worms
are hermaphrodites and XO worms are males. There is no
sex-specific chromosome, such as a Y chromosome. Her-
maphrodites and males display numerous sex-specific
anatomical features and have different germline develop-
mental programs (Fig. 1). These dramatic differences be-
tween the sexes are initiated in the early embryo, and result
from counting and properly responding to the number of X
chromosomes relative to autosomes (Nigon 1951; reviewed
in Meyer 2000). How can a simple difference in sex chro-
mosome number translate into such dramatically different
developmental programs? An important concept is that
C. elegans cells must assess not only the number of X chro-
mosomes but also the number of sets of autosomes. It is the
ratio of these—the X:A ratio—that determines sex. Diploid
animals with two X chromosomes (X:A ratio of 1) develop
as hermaphrodites, whereas those with one X chromosome
(X:A ratio of 0.5) develop as males (Fig. 2). Many of the
mechanistic details of appropriately responding to the X:A
ratio have been elegantly dissected and are summarized in
Sections 3–5.

The difference in X-chromosome dosage between the
sexes leads, if uncorrected, to a difference in the levels of
X-linked gene expression. Indeed, the double dose of X
genes is lethal to hermaphrodites if not corrected. Intrigu-
ingly, somatic cells and germ cells have evolved different
mechanisms to deal with this X-dosage challenge (Fig. 3).
The germline and somatic lineages are fully separated from

each other by the 24-cell stage of embryogenesis. Starting at
about the 30-cell stage, the somatic lineages initiate a pro-
cess termed “dosage compensation” whereby genes that re-
side on the X chromosomes of XX animals are down-
regulated approximately twofold. In contrast, as discussed
in Brockdorff and Turner (2014) and Kuroda and Lucchesi
(2014), mammals implement dosage compensation by
globally silencing one X in the XX sex, and fruit flies imple-
ment dosage compensation by up-regulating expression
from the single X in the XY sex. In C. elegans germline tissue,
a more extreme adjustment of X-linked gene expression
occurs: The single X in males and both Xs in hermaphro-
dites are globally repressed. The chromatin-based mecha-
nisms that accomplish dosage compensation in the soma
and X-chromosome repression in the germline are the sub-
jects of this article.

2 ASSESSING THE X:A RATIO

How do worm cells count Xs and autosomes so that dosage
compensation is implemented when the X:A ratio is 1? Four
small regions of the X, termed X signal elements (XSEs),
have been identified as contributing to the numerator por-
tion of the X:A ratio. By mutagenesis, four responsible X-
linked genes have been identified within the XSE regions:
sex-1 (sex for signal element on X), fox-1 (fox for feminizing
gene on X), ceh-39, and sex-2 (Carmi et al. 1998; Skipper
et al. 1999; Gladden and Meyer 2007; Gladden et al. 2007).
These four genes repress expression of xol-1, the most up-
stream gene in the sex determination and dosage compen-
sation pathway, during a critical window of embryonic

XX hermaphrodite

XO male

Oocytes

Embryos

Sperm

Sperm Tail

Vulva

Gonad

Gonad

Figure 1. C. elegans hermaphrodite and male anatomy. C. elegans naturally exists as two sexes: XX hermaphrodites
and XO males. Hermaphrodites and males display several sex-specific anatomical features, most notably a male tail
designed for mating and a vulva on the ventral surface of hermaphrodites for reception of male sperm and for egg-
laying. Their germline programs also differ. The two-armed gonad in hermaphrodites produces sperm initially and
then oocytes throughout adulthood. The one-armed gonad in males produces sperm continuously. (Adapted, with
permission, from Hansen et al. 2004, # Elsevier.)
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Caenorhabditis elegans as an organism model 
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Highest chromatin compaction in meiosis 

Llères D, Bailly A et al. Cell 
reports. 2017 



Distinct chromatin domain structures in pachytene-stage 
chromosomes 
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Open loops 
Dense loops 

Intermingling interactions 

Ongoing work: Modeling Chromatin domain structures 
in pachytene-stage chromosomes 
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Coarse grained 
modeling 



What do these compaction states correspond to ? 

How are they controlled ? 



HP1 homolog is essential for heterochromatin compaction 
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pRF4 extra-chromosomal array 
•  Silenced in germ cells 

•  Expressed in somatic cells 

ROLLER 
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Silenced repeated sequences acquired structurally 
compacted chromatin controlled by HP1 



Adapted from Strome S et al. CSHLP. 2014. 

A critical unanswered question is how DCC spreading
occurs from the initial recruitment sites (Fig. 5B). Most of
the tested sites on the X chromosome are not able to recruit
the DCC by themselves, yet the DCC is bound to them
in the context of the natural chromosome. The DCC accu-
mulates through a spreading mechanism, especially at the
promoters of actively transcribed genes (Ercan et al. 2007).
In experiments using X-to-autosome end-to-end fusion
chromosomes, the DCC was also shown to spread from
the X to juxtaposed autosomal sequences, indicating that
unlike recruitment, DCC spreading is not dependent on
any particular property of X-linked DNA sequences (Ercan
et al. 2009). Furthermore, DCC spreading onto juxtaposed
autosomal DNA is concentrated on the promoter regions
of actively transcribed genes, just as it is on the natural X
chromosome.

In summary, spreading of the DCC onto active promot-
ers is governed by a mechanism that is not specific to the X
chromosome, but DCC spreading is largely restricted to the

X via recruitment of the DCC to rex sites (Fig. 5). What
property of active promoters does the DCC recognize? One
candidate is a histone variant H2A.Z because upon deple-
tion of H2A.Z, DCC immunostaining is no longer as
sharply restricted to the X chromosome as in wild type
(Petty et al. 2009). Spreading may also be mediated by
cooperative interactions between DCC complexes, physical
interaction with the transcription machinery, or local mod-
ification of chromatin into a structure that facilitates more
DCC binding in a self-reinforcing loop as shown for the
spread of heterochromatin in Schizosaccharomyces pombe
(see Martienssen and Moazed 2014).

5 EFFECTS OF THE DCC: DOWN-REGULATION
OF X-LINKED GENES AND THE AUTOSOMAL
GENE her-1

Mammals, fruit flies, and worms appear to have co-opted
different preexisting chromatin complexes to serve the spe-
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Figure 4. The DCC and condensin complexes. The worm DCC resembles the condensin complex, which functions in
condensing chromosomes during nuclear division. In particular, the DCC contains several subunits that are
homologous to the XCAP (XCAP for Xenopus chromosome-associated polypeptide) subunits of the 13S condensin
complex I, originally characterized in Xenopus. There are two condensin complexes in most metazoans and three
complexes in C. elegans. MIX-1 is present in all three C. elegans condensin complexes. Three additional DCC
subunits (DPY-26, DPY-28, and CAPG-1) are present in both condensin I and condensin IDC. The SDC proteins,
DPY-21 and DPY-30, do not resemble known condensin subunits; they instead function in localizing condensin IDC

to the X chromosome. (Adapted from Meyer 2005 and Csankovszki et al. 2009.)
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Condensin complexes differentially regulate compaction 



Relationship between Condensin complexes and 
lampbrush meiotic architecture 
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Summary 



Conclusions 

•  Meiotic chromosomes in living C. elegans display heterogeneous 

chromatin domain structures 

•  Heterochromatin architecture revealed a highly compacted 

nanoscale organisation in vivo controlled by HP1 

•  Tandem repeat-enriched ectopic chromosomes acquire 

heterochromatic structure  

•  Condensin I and II show differential effects on chromosome 

structure 
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