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genes, it has become more and more clear that the physical location
and dynamic properties of the DNA molecule that carries them are
critical components of their biological activity. For example, Morgan’s
mapping strategy relied on measuring the frequency of recombination
between two or more genes. The physical process of recombination
requires that two homologous DNA molecules be mobile within a
nucleus such that they can physically encounter one another with a
measurable frequency. Recombinations do not seem to occur in all
nuclei. In the fruit fly, chromosomes are able to recombine in meiosis
during oogenesis in the female germline, but not during spermatoge-
nesis in the male germline. Why is it that sometimes DNA segments
are able to physically encounter one another and sometimes they
are not? What determines the probability of such encounters? These
issues in polymer conformations set physical limits on genetic events
ranging from transformation and transduction in bacterial cells to the
generation of diverse antibodies in the immune system of mammals.

Different Structural Models of Chromatin Are Characterized by the
Linear Packing Density of DNA

One of the themes that we will keep revisiting is the question of DNA
packing. In eukaryotic cells, DNA is condensed into chromatin fibers.
The basic unit of chromatin is the nucleosome. How nucleosomes are
packaged into chromatin depends on whether the cell is dividing or
not. During interphase, the cell is actively transcribing genes, and the
chromosomes are not as condensed as during mitosis when the two
copies of the complete genome need to be equally divided among the
two daughter cells.

One measure of the degree of DNA packaging into chromosomes
is the linear density of chromatin, ν, which specifies the number of
base pairs of DNA in a nanometer of chromatin fiber. For the 30 nm
fiber, shown in Figure 8.7(A), ν ≈ 100 bp/nm, while for the 10 nm
fiber the packing density is about an order of magnitude smaller.
A simple estimate of ν can be made based on the micrograph in
Figure 8.7(B), which shows individual nucleosomes along the 10 nm
fiber. We see that there are on average two nucleosomes for every
50 nm of fiber. We assume there are 200 bp per nucleosome (150 bp
wound around the histones plus 50 bp of linker DNA), and there-
fore ν ≈ 2× 200 bp/50 nm = 8 bp/nm. For comparison, for metaphase
chromosomes, ν ≈ 30,000 bp/nm.

(A)

(B)

50 nm

Figure 8.7: Electron microscopy
images of chromatin. (A) Chromatin
extracted from an interphase nucleus
appears as a 30 nm thick fiber. (B)
Stretching out a part of the chromatin
reveals the “beads-on-a-string” structure
of the 10 nm fiber, where each bead is
an individual nucleosome. (A, courtesy
of Barbara A. Hamkalo; B, courtesy of
Victoria Foe.)
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How do multiple endogenous enhancers interact with the 
same promoter at the same time? 

 
How does that control cellular differentiation? 

 
è Export tools to mammalian systems 

è New lab @Pasteur/Paris 
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