Imaging nuclear organisation at the nanoscale

Is spatial chromosome organization random or heterogeneous?

Marcelo Nollmann

department of quantitative biology center for structural biochemistry CNRS / INSERM, Montpellier, France

Organization of chromatin into TADs

Single-cell Hi-C

Nagano, *Nature*, 2013 Flyamer, *Nature*, 2017 Stevens, *Nature*, 2017

TADs arise only after ensemble averaging?

Direct imaging of TADs

 $V^{TAD} \sim g^b$

Boettiger, *Nature*, 2016 Fabre, *PNAS*, 2015 Szabo, Science Adv, 2018

suggests that TADs exist in each cell

Develop methods to directly measure the absolute levels of heterogeneity to discern between these models

Organization of TAD borders one cell at a time

Measure distance distributions

>100 distributions

Boettiger, Nature, 2016

Measuring absolute contact frequencies in single cells

Quantitative measurements of absolute contact probabilities

Do TAD borders loop in *Drosophila*? Organization of TAD borders one cell at a time

What makes a TAD? Measuring stochasticity within single TADs

How do TADs interact to form compartments? Epigenetic compartments super-resolved

Probability of interaction between TAD borders

Consecutive borders

All borders

Absolute contact probabilities between consecutive TAD borders are small ~ 5%

Contact probabilities are affected by genomic distance (power-law dependence)

Interactions between TAD borders in Drosophila

Hug, Cell, 2017

Eagen, PNAS, 2017

Our data shows very rare looping between TAD borders in *Drosophila* and suggests TAD borders act as barriers, not the bases of stable loops

Do TAD borders loop in *Drosophila*? Organization of TAD borders one cell at a time

What makes a TAD? Measuring stochasticity within single TADs

How do TADs interact to form compartments? Epigenetic compartments super-resolved

Absolute contact frequencies within TADs

Contact probabilities remain small <10%

Contact probabilities are larger within TADs than between TADs

Null/repressed TADs show higher interaction frequencies than active TADs

Despite high heterogeneity, multiple, TAD-specifici contacts may be enough to account for TADs

Do TAD borders loop in *Drosophila*? Organization of TAD borders one cell at a time

What makes a TAD? Measuring stochasticity within single TADs

How do TADs interact to form compartments? Epigenetic compartments super-resolved

Active / repressed compartments visualized at super-resolution

0.1

0.05

0.1

Frequency

two colour dSTORM

H3K27me3 H3K4me3

7 78. 1**1** 7 7

200nm

Domain sizes

H3K27me3 H3K4me3

200

Compartment size, nm

800

400

Probability of TAD clustering ~ 10%

epigenetic domains exist at the single-cell level

clustering between domains of the same type exists but is rare and depends on cell type.

Randomness versus heterogeneity

Multiple, low-frequency yet **specific** interactions may be sufficient to organise chromatin at different scales

Direct visualisation of epigenetic domains, [clustering is rare]

Cattoni*, Cardozo-Gizzi*, Georgieva*, Nat. Comm. (2017)

Acknowledgements

Jean-Bernard Fiche

Diego Cattoni,

Sergio Espínola,

Fanny Berard, Chris

Christophe Houbron,

Julian Gurgo,

Olivier Messina,

Andres Cardozo

Mariya Georgieva

Marc Marti-Renom (CRG)

Fred Bantignies Giacomo Cavalli (IGH)

