A NUMERICAL MODEL FOR THE SPATIO-TEMPORAL PROGRAM OF DNA REPLICATION IN XENOPUS EARLY EMBRYOS

DILETTA CIARDO SUPERVISORS: KATHRIN MARHEINEKE , ARACH GOLDAR

Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC) CNRS, CEA, Paris South University, Gif sur Yvette, France

Initiation of DNA Replication origins in eukaryotes:

- Thousands of origins
- No clear consensus sequence for pre-RC binding

Spatio-temporal program of replication:

Dormant origins

- Origins grouped in clusters
- Different times of firing

Intra-S phase checkpoint and the spatio-temporal program of replication:

- Activated in response to stalled forks
- Inhibits activation of late origins and delay mitosis entry.
- Hypothesis: Plk1 inhibits Chk1 action also in absence of exogenus replication stress?

Marheineke &Hyrien (2004) Trenz et al. (2008) Platel et al. (2015)

Experimental system:

Xenopus laevis in vitro replication system

- Synchronous S phase entry

Random initiationNo trascription

Visualisation of replication origins by DNA combing in the Xenopus in vitro system:

Analysis of temporal program of replication in Xenopus early embryos:

Temporal program:

(Monte Carlo numerical simulations with simplex optimization algorithm)

Platel et al. (2015)

Result: Inhibition of late firing origins in late clusters, but not in already active clusters

P_{polo}: Probability of action of PlkI
P_{chkI}: Probability of action of ChkI
P_{init}: Probability of action of limiting factor
d_{polo}: Distance of action of PlkI

Number of ChkI and PlkI exactly equal to the number of forks

Objectives:

- Understand if the model can reproduce the spatial program of DNA replication in *Xenopus* early embryos
 - Comparison of numerical and experimental eye-to-eye distance (ETED) distributions

Previous model does not reproduce the special program of replication:

Extraction of the ETED distribution using the previous model (Monte Carlo simulations):

Parameters:	
No: I	dpolo: 45000
J: 4/120	NChk1:I
Po: 0.01	%Chk1 : 1
PChk1 : 0.99	PPolo : 0.01

- Old parameters
- Old scenario
- New code

Analysis of the spatial and temporal replication program in Xenopus early embryos:

- Consider both spatial and temporal program (ETED considered)
- Length of simulated genome comparable to real length
- Experimental procedure reproduced in simulations
- Time points considered separately

Strategy:

RESULT: Family of sets of variables of a given model that better describe the experimental data

Dynamic Monte Carlo:

Elongation

	-	-						-					
0	1	1	1	0	0	0	 	 1	1	1	0	0	0

► Termination/merger

Goldar et al. (2008)

Parameters:	N0 : initial number of limiting factor	dbox: Distance of action of Pbox and Plk1 (kb)
] : Rate of import of limiting factor (s ⁻¹)	N.regions : Number of regions
	<u>P0</u> : Initial probability of initiation	Dregions : Half of the length of regions (kb)
	PChkl : Probability of inhibition by Chkl	PPolo : Prob. of action of Plk I
	<u>Pbox</u> : Increased prob. close to replication	
	forks	

Comparison family of sets in absence and presence of Chkl inhibition:

Kolmogorov-Smirnov test, α=0.05

Best model:

Acknowledgements:

Team Kathrin Marheineke Group « Dynamique de la Réplication de l'ADN chez les eucaryotes supérieurs »

Équipe: MARHEINEKE Kathrin HACCARD Olivier NARASSIMPRAKASH Hemalatha BAZIN Melanie (L3 student) Team Julie Soutourina Group « Régulation transcriptionnelle des génomes »

Équipe:

SOUTOURINA Julie GOLDAR Arach DENBY WILKES Cyril WERNER Michel GIORDANENGO-AIACH Nathalie GOPAUL Diyavarshini

Thank you for Your attention!

SDS-PAGE (Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis) and Western Blot

- The SDS-PAGE gel electrophoresis separate the proteins by size;
- SDS is applied to protein samples to linearize proteins and to impart a negative charge (uniform distribution of charge per unit mass);
- The protein of interest interacts with a specific antibody (primary antibody);
- A second antibody (linked to the horseradish peroxidase) binds to the primary and allows the detection by the use of a Chemiluminescence kit.

DNA combing technique:

- Replication can be followed by the incorporation of Biotin-dUTP;
- The pH dependent interaction between DNA and the hydrophobic coverslip and the airsolution meniscus allows the stretching of the fibers across the glass surface;
- The biotin labelling is realized by a succession of five incubations alternating between Streptavidin Alexa Fluor 594 and biotinyled anti-Streptavidin antibodies;
- Totality of DNA is labelled with human anti-DNA antibody followed by Alexa Fluor 488 anti-mouse and anti-rabbit .

Causes of replication stress:

Internal replication stress is generally present in the replication process:

Scenario: Random initiation by limiting factor

Scenario: Random initiation by limiting factor on preferential genomic loci

Scenario: Random initiation by limiting factor whose number is enhanced near activated origins

GENETIC ALGORITHM

It is an optimization and search technique based on the principles of genetic recombination and natural selection.

GENETIC ALGORITHM

Set of 11 variables (chromosome):

limitfactor max:788375, ratej:2870.327, prob init:0.39965, perc probinit:0.8825, initn chk1:575553, perc chk1:6.761, prob pchk1:0.046096, prob box:0.88395, dist box:14, prob polo:0.40167, perc polo:0.45698

GENETIC ALGORITHM

Results from best model (Absence of Chk1 inhibition):

Results from best model (Chkl inhibition):

