Microscopic model for $e^{+} e^{-}$production in $\pi \mathrm{N}$ collisions

Miklós Zétényi
with
Enrico Speranza, Bengt Friman

Milisner

Wigner RCP,
Budapest

ExtreMe Matter Institute, Darmstadt

Introduction

- A lot of info is encoded in angular distributions of particle scattering
- disentangling overlapping resonances
- finding quantum numbers of particles $\left(J^{P}\right)$
- Angular distribution is related to orbital motion of particles
\rightarrow relation to spin/polarization
- Importance of polarized experiments
- Nontrivial polarization can exist in unpolarized experiments

$$
\text { e.g. } \begin{aligned}
\pi+N \rightarrow N^{*} & \text { : orbital angular momentum component parallel to the beam is } 0 \\
& \rightarrow N^{*} \text { polarization }=N \text { polarization } \\
& \rightarrow \text { only } \lambda= \pm \frac{1}{2} \text { even for higher resonances }
\end{aligned}
$$

Density matrix

- Representation of a general QM state including mixed states
- unpolarized beam/target: mixed state (incoherent mixture of different polarizations)
- The system is in state $\left|\psi_{i}\right\rangle$ with probability $P_{i}: \quad \rho=\sum_{i} P_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
- Expectation value of operator $O:\langle O\rangle=\operatorname{Tr}(O \rho)$
- two-step process:

$$
\left|\psi_{i}\right\rangle \xrightarrow{T_{1}} T_{1}\left|\psi_{i}\right\rangle=\sum_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle \xrightarrow{T_{2}} \sum_{k} T_{2}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle
$$

- probability of $\left|\psi_{f}\right\rangle$ in final state: $\mathcal{M}_{f i}=\sum_{k}\left\langle\psi_{f}\right| T_{2}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle$

$$
\sum_{i} P_{i}\left|\mathcal{M}_{f i}\right|^{2}=\sum_{k} \rho_{k^{\prime} k}^{\mathrm{dec}} \rho_{k k^{\prime}}^{\mathrm{prod}}=\operatorname{Tr}\left(\rho^{\mathrm{dec}} \rho^{\text {prod }}\right)
$$

production and decay density matrices:

$$
\rho_{k k^{\prime}}^{\mathrm{prod}}=\sum_{i} P_{i}\left\langle\phi_{k}\right| T_{1}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| T_{1}\left|\phi_{k^{\prime}}\right\rangle
$$

$$
\rho_{k^{\prime} k}^{\mathrm{dec}}=\left\langle\phi_{k^{\prime}}\right| T_{2}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| T_{2}\left|\phi_{k}\right\rangle
$$

Decay of a resonance - polarization

A resonance of spin- J decays into two particles with spins s_{1} and s_{2} :

$$
\mathcal{M}_{J \rightarrow s_{1}+s_{2}}=\left\langle\mathbf{k} s_{1} \lambda_{1},-\mathbf{k} s_{2} \lambda_{2}\right| T_{J \rightarrow s_{1}+s_{2}}|J \lambda\rangle
$$

Final state in terms of eigenstates of total angular momentum:

$$
\begin{gathered}
\left|\mathbf{k} s_{1} \lambda_{1},-\mathbf{k} s_{2} \lambda_{2}\right\rangle=4 \pi \sqrt{\frac{\sqrt{s}}{|\mathbf{k}|}} \sum_{J \lambda} \sqrt{\frac{2 J+1}{4 \pi}} D_{\begin{array}{c}
\text { Wigner matrix } \\
\text { Wid }
\end{array}}^{J}(\Omega)\left|J \lambda ; \lambda_{1} \lambda_{2}\right\rangle \\
\mathcal{M}_{J \rightarrow s_{1}+s_{2}}=\sqrt{\frac{2 J+1}{4 \pi}} D_{\lambda, \lambda_{1}-\lambda_{2}}^{J}(\Omega)^{*} F_{\lambda_{1} \lambda_{2}}^{J} \text { helicity amplitude }
\end{gathered}
$$

Decay density matrix:

$$
\rho_{\lambda^{\prime}, \lambda}^{\mathrm{dec}}=\sum_{\lambda_{1} \lambda_{2}} \frac{2 J+1}{4 \pi}\left|F_{\lambda_{1} \lambda_{2}}^{J}\right|^{2} D_{\lambda^{\prime}, \lambda_{1}-\lambda_{2}}^{J}(\Omega) D_{\lambda, \lambda_{1}-\lambda_{2}}^{J}(\Omega)^{*}
$$

$\rho \rightarrow \pi^{+} \pi^{-}$

$$
\begin{gathered}
\rho \rightarrow \pi \pi: \lambda_{1}=\lambda_{2}=0, J=1 \\
\rho_{\lambda^{\prime} \lambda}^{\rho \rightarrow \pi \pi}=\frac{3}{4 \pi}|F|^{2} D_{\lambda^{\prime}, 0}^{1}(\Omega) D_{\lambda, 0}^{1}(\Omega)^{*} \\
D_{1,0}^{1}(\Omega)=-\frac{1}{\sqrt{2}} \sin \theta e^{i \phi} \\
D_{1,0}^{1}(\Omega)=\cos \theta \\
D_{1,0}^{1}(\Omega)=\frac{1}{\sqrt{2}} \sin \theta e^{-i \phi}
\end{gathered}
$$

$$
\rho_{\lambda^{\prime}, \lambda}^{\mathrm{dec}}=2|\mathbf{p}|^{2}\left(\begin{array}{ccc}
1-\cos ^{2} \theta_{\pi} & \frac{\sqrt{2}}{2} \sin 2 \theta_{\pi} e^{i \phi_{\pi}} & -\sin ^{2} \theta_{\pi} e^{2 i \phi_{\pi}} \\
\frac{\sqrt{2}}{2} \sin 2 \theta_{\pi} e^{-i \phi_{\pi}} & 2 \cos ^{2} \theta_{\pi} & -\frac{\sqrt{2}}{2} \sin 2 \theta_{\pi} e^{i \phi_{\pi}} \\
-\sin ^{2} \theta_{\pi} e^{-2 i \phi_{\pi}} & -\frac{\sqrt{2}}{2} \sin 2 \theta_{\pi} e^{-i \phi_{\pi}} & 1-\cos ^{2} \theta_{\pi}
\end{array}\right)
$$

$\rho \rightarrow e^{+} e^{-}$

$$
\rho_{\lambda^{\prime}, \lambda}^{\mathrm{dec}}=4|\mathbf{p}|^{2}\left(\begin{array}{ccc}
1+\cos ^{2} \theta_{e}+\alpha & -\frac{\sqrt{2}}{2} \sin 2 \theta_{e} e^{i \phi_{e}} & \sin ^{2} \theta_{e} e^{2 i \phi_{e}} \\
-\frac{\sqrt{2}}{2} \sin 2 \theta_{e} e^{-i \phi_{e}} & 2\left(1-\cos ^{2} \theta_{e}\right)+\alpha & \frac{\sqrt{2}}{2} \sin 2 \theta_{e} e^{i \phi_{e}} \\
\sin ^{2} \theta_{e} e^{-2 i \phi_{e}} & \frac{\sqrt{2}}{2} \sin 2 \theta_{e} e^{-i \phi_{e}} & 1+\cos ^{2} \theta_{e}+\alpha
\end{array}\right)
$$

angular distribution:

$$
\begin{aligned}
\sum_{\text {pol }}|\mathcal{M}|^{2} & \propto\left(1+\cos ^{2} \theta_{e}\right)\left(\rho_{-1,-1}^{\text {had }}+\rho_{1,1}^{\text {had }}\right)+2\left(1-\cos ^{2} \theta_{e}\right) \rho_{0,0}^{\text {had }} \\
& +\sin ^{2} \theta_{e}\left(e^{2 i \phi_{e}} \rho_{-1,1}^{\text {had }}+e^{-2 i \phi_{e}} \rho_{1,-1}^{\text {had }}\right) \\
& +\sqrt{2} \cos \theta_{e} \sin \theta_{e}\left[e^{i \phi_{e}}\left(\rho_{-1,0}^{\text {had }}+\rho_{0,1}^{\text {had }}\right)+e^{-i \phi_{e}}\left(\rho_{1,0}^{\text {had }}+\rho_{0,-1}^{\text {had }}\right)\right]
\end{aligned}
$$

$\rho \rightarrow e^{+} e^{-}$

angular distribution:

$$
\begin{aligned}
\frac{d \sigma}{d \Omega_{e}} \propto & 4|\mathbf{p}|^{2} \mathcal{N}_{e}\left(1+\lambda_{\theta} \cos ^{2} \theta_{e}+\lambda_{e} \sin ^{2} \theta_{e} \cos 2 \phi_{e}+\lambda_{\theta \phi} \sin 2 \theta_{e} \cos \phi_{e}\right. \\
& \left.+\lambda_{\phi}^{\perp} \sin ^{2} \theta_{e} \sin 2 \phi_{e}+\lambda_{\theta \phi}^{\perp} \sin 2 \theta_{e} \sin \phi_{e}\right) .
\end{aligned}
$$

anisotropy coefficients:

$$
\begin{aligned}
& \lambda_{\theta}=\frac{1}{\mathcal{N}_{e}}\left(\rho_{-1,-1}^{\text {prod }}+\rho_{+1,+1}^{\text {prod }}-2 \rho_{0,0}^{\text {prod }}\right), \\
& \lambda_{\phi}=\frac{1}{\mathcal{N}_{e}} 2 \operatorname{Re}\left(\rho_{-1,+1}^{\text {prod }}\right), \\
& \lambda_{\theta \phi}=\frac{1}{\mathcal{N}_{e}} \sqrt{2} \operatorname{Re}\left(\rho_{0,+1}^{\text {prod }}-\rho_{-1,0}^{\text {prod }}\right), \\
& \lambda_{\phi}^{\perp}=\frac{1}{\mathcal{N}_{e}} 2 \operatorname{Im}\left(\rho_{-1,+1}^{\text {prod }}\right), \\
& \lambda_{\theta \phi}^{\perp}=\frac{1}{\mathcal{N}_{o}} \sqrt{2} \operatorname{Im}\left(\rho_{0,+1}^{\text {prod }}-\rho_{-1,0}^{\text {prod }}\right),
\end{aligned}
$$

normalization:

$$
\mathcal{N}_{e}=\rho_{-1,-1}^{\text {prod }}+\rho_{+1,+1}^{\text {prod }}+2 \rho_{0,0}^{\text {prod }}+\alpha\left(\rho_{-1,-1}^{\text {prod }}+\rho_{+1,+1}^{\text {prod }}+\rho_{0,0}^{\text {prod }}\right)
$$

$\pi N \rightarrow N e^{+} e^{-}$

Consistent interactions for higher spin resonances:
invariance under

$$
\psi_{\mu} \rightarrow \psi_{\mu}+i \partial_{\mu} \chi \quad \text { spin-3/2 }
$$

$$
\psi_{\mu \nu} \rightarrow \psi_{\mu \nu}+\frac{i}{2}\left(\partial_{\mu} \chi_{\nu}-\partial_{\nu} \chi_{\mu}\right) \text { spin-5/2 }
$$

Gauge invariant operators:

$$
\begin{aligned}
G_{\mu, \nu} & =i\left(\partial_{\mu} \psi_{\nu}-\partial_{\nu} \psi_{\mu}\right) \\
G_{\mu \nu, \lambda \rho} & =-\partial_{\mu} \partial_{\nu} \psi_{\lambda \rho}-\partial_{\lambda} \partial_{\rho} \psi_{\mu \nu}+\frac{1}{2}\left(\partial_{\mu} \partial_{\lambda} \psi_{\nu \rho}+\partial_{\mu} \partial_{\rho} \psi_{\nu \lambda}+\partial_{\nu} \partial_{\lambda} \psi_{\mu \rho}+\partial_{\nu} \partial_{\rho} \psi_{\mu \lambda}\right)
\end{aligned}
$$

new fields:

$$
\Psi_{\mu}=\gamma^{\nu} G_{\mu, \nu} \quad \Psi_{\mu \nu}=\gamma^{\lambda} \gamma^{\rho} G_{\mu \nu, \lambda \rho}
$$

$\pi N \rightarrow N e^{+} e^{-}$

$$
\begin{aligned}
\mathcal{L}_{R_{3 / 2} N \rho}^{1} & =\frac{i g_{1}}{4 m_{N}^{2}} \bar{\Psi}_{R}^{\mu} \vec{\tau} \gamma^{\nu} \tilde{\Gamma} \psi_{N} \cdot \vec{\rho}_{\nu \mu} \\
\mathcal{L}_{R_{3 / 2} N \rho}^{2} & =\frac{i g_{2}}{8 m_{N}^{3}} \bar{\Psi}_{R}^{\mu} \vec{\tau} \tilde{\Gamma} \partial^{\nu} \psi_{N} \cdot \vec{\rho}_{\nu \mu} \\
\mathcal{L}_{R_{3 / 2} N \rho}^{3} & =\frac{i g_{3}}{8 m_{N}^{3}} \bar{\Psi}_{R}^{\mu} \vec{\tau} \tilde{\Gamma} \psi_{N} \cdot \partial^{\nu} \vec{\rho}_{\nu \mu} \\
\mathcal{L}_{R_{5 / 2} N \rho}^{1} & =-\frac{g_{1}}{\left(2 m_{N}\right)^{4}} \bar{\Psi}_{R}^{\mu \nu} \vec{\tau} \tilde{\Gamma} \gamma^{\rho}\left(\partial_{\mu} \psi_{N}\right) \cdot \vec{\rho}_{\rho \nu} \\
\mathcal{L}_{R_{5 / 2} N \rho}^{2} & =-\frac{g_{2}}{\left(2 m_{N}\right)^{5}} \bar{\Psi}_{R}^{\mu \nu} \vec{\tau} \tilde{\Gamma} \partial^{\rho}\left(\partial_{\mu} \psi_{N}\right) \cdot \vec{\rho}_{\rho \nu} \\
\mathcal{L}_{R_{5 / 2} N \rho}^{3} & =-\frac{g_{3}}{\left(2 m_{N}\right)^{5}} \bar{\Psi}_{R}^{\mu \nu} \vec{\tau} \tilde{\Gamma}\left(\partial_{\mu} \psi_{N}\right) \cdot \partial^{\rho} \vec{\rho}_{\rho \nu}
\end{aligned}
$$

Consistent interactions in pion photoproduction

- Born + s- and u-channel Δ contribution
- u-channel violates unitarity \rightarrow unphysical rise at high $E_{\text {lab }}$
- "gauge invariant" Lagrangian is better

Anisotropy coefficient for $e^{+} e^{-}$

Anisotropy coefficient for $\pi^{+} \pi^{-}$

$N(1440)$ and $N(1520)$

$\sqrt{s}=1.49 \mathrm{GeV} \quad M=0.5 \mathrm{GeV}$
$\left|A_{s}^{i}+A_{u}^{i}\right|^{2}$

$$
\left|A_{s}^{i}+A_{u}^{i}\right|^{2}
$$

- Unknown relative phase between contributions of the two resonances
- λ_{θ} does not depend strongly on the relative phase

Conclusions

- The anisotropy coefficient λ_{θ} reflects the polarization state of the virtual photon
- Shape of $\lambda_{\theta}\left(\theta_{\gamma^{*}}\right)$ as a function of $\theta_{\gamma^{*}}$ is characteristic of the spin-polarization of intermediate resonances
- Triple differential cross section is needed - attempt by HADES
- ρ contribution to $\pi^{+} \pi^{-}$is related to $e^{+} e^{-}$

Still to do:

- Add nonresonant contributions
- Relate to helicity amplitudes
- Add sequential decays to $\pi^{+} \pi^{-}\left(R \rightarrow R^{\prime} \pi \rightarrow N \pi \pi\right)$

