Transition form factors and radiative decays of hyperons

Stefan Leupold

Uppsala University

Orsay, May 2018

Femtoscience

- Want to understand structure of matter at femtometer scale
- (electromagnetic)
 form factors contain
 structure information
- spatial distributions related to Fourier transform of space-like form factors

Femtoscience

- Want to understand structure of matter at femtometer scale
- (electromagnetic)
 form factors contain
 structure information
- ⇒ spatial distributions related to Fourier transform of space-like form factors
 - How does hadronic structure change when replacing up/down by strange quarks?
- → Would like to get information about form factors of hyperons

Electromagnetic form factors of hyperons

to large extent terra incognita

- electron-hyperon scattering complicated
- → instead:
 - ullet reactions $e^+\,e^- o$ hyperon anti-hyperon $(Y_1\,\,ar{Y}_2)\leadsto {\sf BESIII}$
 - \hookrightarrow form factors and transition form factors for large time-like $q^2>(m_{Y_1}+m_{Y_2})^2$
 - decays $Y_1 \rightarrow Y_2 e^+ e^- \rightsquigarrow \mathsf{HADES} + \mathsf{PANDA}$
 - \hookrightarrow transition form factors for small time-like $q^2 < (m_{Y_1} m_{Y_2})^2$

Structure information about hyperons

- need space-like form factors to obtain structure information
- \hookrightarrow alternative: explore time-like region and use dispersion theory (time-like means $q^2 > 0$, i.e. energy transfer > momentum transfer)

Unitarity and analyticity

- constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary (optical theorem):

$$SS^{\dagger}=1\,,\quad S=1+iT\quad \Rightarrow\quad 2\,{\rm Im}\,T=T\,T^{\dagger}$$

$$\operatorname{Im} T_{A \to B} = \sum_{X} T_{A \to X} T_{X \to B}^{\dagger}$$

- \rightarrow in practice: use most relevant intermediate states X
 - analytical (dispersion relation for form factors):

$$T(q^2) = T(0) + \frac{q^2}{\pi} \int_{\text{threshold}}^{\infty} ds \, \frac{\operatorname{Im} T(s)}{s(s - q^2 - i\epsilon)}$$

→ can be used to calculate whole amplitude from imaginary part

Dispersion relation for form factor

example:
$$e^+e^- o \gamma^* o Y_1 ar{Y}_2$$
 (= B)

$$T_{\gamma^* o B}(q^2) = T_{\gamma^* o B}(0) + rac{q^2}{\pi} \int\limits_{ ext{threshold}}^{\infty} ds \, rac{\sum_X T_{\gamma^* o X}(s) \, T_{X o B}^{\dagger}(s)}{s \, (s-q^2-i\epsilon)}$$

- physical threshold is at $m_{Y_1} + m_{Y_2}$, but in dispersion relation the threshold is given by the lowest-mass states that can couple to virtual photons (and hyperons)
- $\hookrightarrow X = 2$ pions, ...
- \hookrightarrow threshold = $(2m_{\pi})^2$
- → need information in unphysical region starting at 2-pion threshold
 - most important contribution for low values of q^2 (time-like or space-like)

Pion contribution

$$T_{\gamma^* o Y_1 ar{Y}_2}(q^2) pprox T_{\gamma^* o Y_1 ar{Y}_2}(0) + rac{q^2}{\pi} \int\limits_{4m_\pi^2}^{\infty} ds \, rac{T_{\gamma^* o 2\pi}(s) \, T_{2\pi o Y_1 ar{Y}_2}^{\dagger}(s)}{s \, (s - q^2 - i\epsilon)}$$

- \hookrightarrow need $T_{2\pi \to Y_1 \bar{Y}_2}$ ($T_{\gamma^* \to 2\pi}$ very well known)
- → use again analyticity, dispersion theory and crossing symmetry
- \hookrightarrow need pion-hyperon scattering amplitudes $\pi Y_1 \to \pi Y_2$
- → ideally from data, but not available
- \hookrightarrow use instead chiral perturbation theory (χ PT)
- → determine LEC(s) from data

Strategy

$$T_{\gamma^* o Y_1 ar{Y}_2}(q^2) pprox T_{\gamma^* o Y_1 ar{Y}_2}(0) + rac{q^2}{\pi} \int\limits_{4m_\pi^2}^{\infty} ds \, rac{T_{\gamma^* o 2\pi}(s) \, T_{2\pi o Y_1 ar{Y}_2}^{\dagger}(s)}{s \, (s - q^2 - i\epsilon)}$$

- measure left-hand side for small time-like $q^2 > 0$, e.g. slope
- determine LEC(s) for $T_{2\pi \to Y_1 \bar{Y}_2}$ on right-hand side
- predict left-hand side for small space-like $q^2 < 0$

Example: Transition form factors Σ - Λ

- electric transition form factor very small over large range
- what one might measure at low energies is magnetic transition form factor
- \hookrightarrow Dalitz-decay data $\Sigma^0 \to \Lambda \, e^+ e^-$ integrated over $\Lambda \! e^-$ angle, but differential in q^2 might be sufficient
 - note: Dalitz decay region $4m_e^2 < q^2 < (m_\Sigma m_\Lambda)^2$ hardly visible here

Magnetic transition form factor Σ - Λ

- large uncertainty
- \hookrightarrow directly related to uncertainty in NLO low-energy constant b_{10}

Magnetic isovector form factor of nucleon

- \hookrightarrow low-energy framework works up to $|q^2| \approx 0.4 \, \text{GeV}^2$
 - "RS" (Roy-Steiner equation): fully dispersive analysis
 - "Kelly param.": parametrization of form factor data J.J. Kelly, Phys.Rev.C 70, 068202 (2004)
- \rightsquigarrow scheme (disp. th. & χ PT) works very well for nucleon

Extension to spin-3/2 hyperons has started

- aiming at transition form factors, Dalitz decays $Y^*(J=3/2) \rightarrow Y e^+e^-$
- \hookrightarrow hyperon-pion scattering amplitudes in chiral perturbation theory ($\chi {\rm PT}$)
- → master thesis Olov Junker, work in progress
 - χ PT prediction for radiative decays $Y^*(J=3/2) \to Y\gamma$
- → next page
 - axial-vector transition form factors and relation to $Y^*(J=3/2) \rightarrow Y\gamma\pi$
- → master thesis Måns Holmberg, work in progress

Radiative decays

Constructing and using chiral perturbation theory at next-to-leading order for decuplet states:

Decay	$c/(c_M e)$	BR [%]	$ c_{\mathcal{M}} $ [GeV ⁻¹]
$\Delta o N\gamma$	$2/\sqrt{3}$	$0.60 {\pm} 0.05$	2.00 ± 0.03
$\Sigma^{*+} \to \Sigma^+ \gamma$	$-2/\sqrt{3}$	0.70 ± 0.17	1.89 ± 0.08
$\Sigma^{*-} \to \Sigma^- \gamma$	0	< 0.024	_
$\Sigma^{*0} o \Sigma^0 \gamma$	$1/\sqrt{3}$	$0.18{\pm}0.01$	// 6
$\Sigma^{*0} o \Lambda \gamma$	-1	$1.25 {\pm} 0.13$	1.89 ± 0.05
$\exists^{*0} \rightarrow \Xi^{0} \gamma$	$-2/\sqrt{3}$	$\textbf{4.0} {\pm} \textbf{0.3}$	
$\Xi^{*-} \rightarrow \Xi^- \gamma$	0	< 4	

(predictions in boldface)

Måns Holmberg, SL, arXiv:1802.05168 [hep-ph], to appear in EPJ A

Axial-vector transition form factors

- interesting for scattering neutrino-nucleon to electron-Delta
- low energies: want to know deviation from current-algebra result \leadsto LEC c_E

• vector and axial-vector transition form factors contribute also to $\Delta \to N\gamma$ and $\Delta \to N\pi\gamma$, respectively

Axial-vector TFFs and three-body decays

problems:

- needs to be disentangled from bremsstrahlung
- hard to measure for broad Delta

Axial-vector TFFs and three-body decays

problems:

- needs to be disentangled from bremsstrahlung
- hard to measure for broad Delta

- \rightarrow in chiral perturbation theory at next-to-leading order: only one LEC c_F for whole multiplet
- get some clue from radiate three-body decays of hyperons, e.g. cascades

Radiative three-body decay — preliminary results

• consider $\Xi^{*0}(1530) \rightarrow \Xi^-\pi^+\gamma$

• branching ratio $(3.7 \pm 0.7) \cdot 10^{-4}$ (cut on photon energy at 50 MeV)

from Måns Holmberg

Collaborators

- Carlos Granados (postdoc, Washington D.C.)
- Elisabetta Perotti (PhD student, Uppsala)
- Måns Holmberg (master student, Uppsala)
- Olov Junker (master student, Uppsala)

```
C. Granados, SL, E. Perotti, Eur.Phys.J. A53 (2017) 117
SL, Eur.Phys.J. A54 (2018) 1
M. Holmberg, SL, Eur.Phys.J.A, in print, arXiv:1802.05168 [hep-ph]
```

Summary

- excellent prospects to explore structure of hyperons
- Uppsala theory group: develop and utilize dispersion theory and chiral perturbation theory
 - can predict magnetic transition form factor Σ^0 - Λ in low-energy space-like region if slope is measured in Dalitz decay
 - work in progress for transition form factors Σ^{*0} - Λ etc.
 - radiative decays $\Sigma^{*0} \to \Sigma^0 \gamma$, $\Xi^{*0} \to \Xi^0 \gamma$ predicted
 - decays $Y^*(J=3/2) \to Y\pi\gamma$ related to axial-vector transition form factors, in turn related to $\nu N \to e^- \Delta$

backup slides

Hyperon transition form factors

- ullet for $\Sigma/\Sigma^* o \Lambda \, e^+ e^-$ need transition form factors -----
- ors
- dispersive framework: at low energies q^2 dependence is governed by lightest intermediate states
- \hookrightarrow need pion vector form factor

(measured)

and hyperon-pion scattering amplitudes

Hyperon-pion scattering amplitudes

- "right-hand cuts" (pion rescattering)
 - straightforward from unitarity and analyticity (and experimental pion phase shift)
- and rest: left-hand cuts, polynomial terms
 - → not straightforward

Input for hyperon-pion scattering amplitudes

- ideally use data
- → available for pion-nucleon, but not for pion-hyperon
- instead: three-flavor baryon chiral perturbation theory (χ PT) at leading and next-to-leading order (NLO) including decuplet states (optional for $\Sigma^0 \to \Lambda$ transition, but turns out to be important!)

χ PT input for hyperon-pion scattering amplitudes

three-point couplings fairly well known, but how to determine NLO four-point coupling constants?

- only one parameter (b_{10}) for Σ - Λ transition
- - "resonance saturation" estimates
 Meißner/Steininger/Kubis, Nucl.Phys. B499, 349 (1997);
 Eur.Phys.J. C18, 747 (2001)
- or from fit to πN and KN scattering data with coupled-channel Bethe-Salpeter approach Lutz/Kolomeitsev, Nucl.Phys. A700, 193 (2002)
 - maybe in the future: cross-check from lattice QCD

parameter is directly related to magnetic transition radius of Σ - Λ

Where are the vector mesons?

• contained in measured pion vector form factor ~~~~

- ullet and contained in four-point coupling \sum_{π}^{π}
 - interactions $\sim \bar{\Lambda} \sigma_{\mu\nu} \Sigma^0 \, V^{\mu\nu}$ and $\sim V_{\mu\nu} \, \partial^{\mu} \pi^+ \partial^{\nu} \pi^-$ (with V vector-meson field) contribute to χ PT four-point interaction $\sim \bar{\Lambda} \sigma_{\mu\nu} \Sigma^0 \, \partial^{\mu} \pi^+ \partial^{\nu} \pi^-$
 - dispersion theory takes care of proper interplay