LPC, Aubière

Le 6 mars, 2009

Facteur de forme du proton sous le seuil par annihilation d'antiprotons sur noyaux

V.A. Karmanov^{\dagger}, H. Fonvieille^{\ddagger}

[†]Lebedev Physical Institute, Moscow, Russia [‡]LPC, Université Blaise Pascal, France

• Why is it interesting?

Since the near-threshold $\overline{N}N$ domain is not a desert, but the structures are expected.

Proton form factor at $-10 \ GeV^2 \le q^2 \le 10 \ GeV^2$:

U. Meissner et al., Nucl. Phys. A 666 (2000) 51.

• Why is it interesting?

Observed structure in $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$ below $\bar{N}N$ threshold.

• $\overline{N}N$ interaction v.s. NN

 e^+e^- interaction v.s. e^-e^-

$$V_{e^+e^-}(r) = -V_{e^-e^-}(r)$$

since the charges of e^- and e^+ are opposite.

$$V_{NN}(r) = V_{\pi}(r) + V_{\rho}(r) + V_{\omega}(r) + V_{\eta}(r) + V_{\sigma_1}(r) + V_{\sigma_2}(r)$$

 $V_{\bar{N}N}(r) = -V_{\pi}(r) + V_{\rho}(r) - V_{\omega}(r) + V_{\eta}(r) - V_{\sigma_1}(r) + V_{\sigma_2}(r)$

Since: $G_{\pi} = G_{\omega} = G_{\sigma_1} = -1$, $G_{\eta} = G_{\rho} = G_{\sigma_0} = +1$ $G = C \exp(iI_2)$ is the *G*-parity (*C* is the charge parity).

I.S. Shapiro, Physics Reports, 35 (1978) 129.

Bound states and resonances in the $\overline{N}N$ system are possible.

If they exist, they manifest themselves as structures in the time-like nucleon near-threshold form factor (below and above threshold).

What to do if \bar{p} 's are fast?

Panda will provide \bar{p} with $p_{\bar{p},lab} \ge 1500$ MeV/c. In $\bar{p}p$ collision at $p_{\bar{p},lab} \ge 1500$ MeV/c., c.m. mass energy: $\sqrt{s} = 2257$ MeV. – Far from $\bar{p}p$ threshold 2m = 1880 MeV

(but close to $\Lambda\bar{\Lambda}$ threshold).

Possibilities:

- Deaccelerate \overline{p} (impossible at PANDA).
- Take a nuclear target.

Annihilation on proton

In annihilation on proton: $q^2 > 4m_p^2$, since all the $\bar{p}p$ energy is transferred to the e^+e^- pair.

Annihilation on deuteron

In annihilation on deuteron: $q^2 > 4m_e^2$ since the $\bar{p}p$ energy can be transferred to the neutron. Virtual γ^* (mass of e^+e^-) can be very light.

Impulse approximation

For fixed e^+e^- mass $\mathcal{M}_{e^+e^-}$, we have two-body kinematics. When mass $\mathcal{M}_{e^+e^-}$ varies, we can calculate mass distribution $\frac{d\sigma}{d\mathcal{M}_{e^+e^-}}$.

Amplitude:

$$M_{\bar{p}d \to ne^+e^-} \sim \psi_d \ M_{\bar{p}p \to e^+e^-} \ F(q^2)$$

• Cross section

Cross section:

 $d\sigma_{\bar{p}d\to ne^+e^-} \sim \int \psi_d^2 M_{\bar{p}p\to e^+e^-}^2 F^2(q^2) dV_3$

 V_3 is three-body phase volume.

• Differential cross section

$$\frac{d\sigma}{d\mathcal{M}_{e^+e^-}} = \sigma_0(\mathcal{M}_{e^+e^-}) \ \eta(\mathcal{M}_{e^+e^-})$$

where

$$\sigma_0(\mathcal{M}_{e^+e^-}) = \frac{\left|M_{\bar{p}p\to e^-e^+}\right|^2}{32\pi m p_{\bar{p},lab}} = \frac{2\alpha^2 \pi (2m^2 + \mathcal{M}_{e^+e^-}^2)}{3\mathcal{M}_{e^+e^-}^2 m p_{\bar{p},lab}},$$

– cross section on free proton

$$\eta(\mathcal{M}_{e^+e^-}) = \frac{mp_n^*\mathcal{M}_{e^+e^-}}{(2\pi)^2\sqrt{s}} \int_{-1}^1 |\psi(k)|^2 dz.$$

 $-e^+e^-$ mass distribution.

Argument of wave function

$$\eta(\mathcal{M}_{e^+e^-}) = \frac{m p^*_{\mathcal{M}_{e^+e^-}} \mathcal{M}_{e^+e^-}}{(2\pi)^2 \sqrt{s}} \int_{-1}^1 |\psi(k)|^2 dz.$$

 $z = \cos \theta$, θ is the angle between \vec{p}_d and \vec{p}_n momenta in c.m. frame of reaction p d.

$$t = (p_d - p_n)^2 = M_d^2 - 2(E_d^* E_n^* - z p_d^* p_n^*) + m^2$$

$$k^2 = \frac{1}{4M_d^2} (M_d^2 + m^2 - t)^2 - m^2$$

Annihilation on free proton

On proton:

$$\frac{d\sigma_{\bar{p}p\to e^-e^+}}{d\mathcal{M}_{e^+e^-}} = \sigma_0(\mathcal{M}_{e^+e^-}) \,\,\delta(\mathcal{M}_{e^+e^-} - \sqrt{s_{p\bar{p}}})$$

On deuteron:

$$\frac{d\sigma}{d\mathcal{M}_{e^+e^-}} = \sigma_0(\mathcal{M}_{e^+e^-}) \ \eta(\mathcal{M}_{e^+e^-})$$

Normalization of $\eta(\mathcal{M}_{e^+e^-})$:

 $\int \eta(\mathcal{M}_{e^+e^-}) d\mathcal{M}_{e^+e^-} = 1 \quad \Leftarrow \text{ automatic, not imposed}$

Effect of nucleus: dilation $\delta(\mathcal{M}_{e^+e^-} - \sqrt{s_{p\bar{p}}}) \Rightarrow \eta(\mathcal{M}_{e^+e^-}).$

• Momentum of proton in deuteron

The proton momentum $\vec{p_p}$ and argument k depend on the scattering angle θ .

For given $\mathcal{M}_{e^+e^-}^2 = (p_{\bar{p}} + p_p)^2 = (p_{e^+} + p_{e^-})^2$, when $-1 \le z \le 1$, then k varies in the limits:

 $350 \ MeV/c \le k \le 1500 \ MeV/c$

How is it possible to have so small $k \approx 350 \ MeV/c$? (instead of 1500 MeV/c)

• Nucleus as a source of fast protons

Naively, we need very fast protons in nucleus:

But protons with p = 1.5 GeV/c are very seldom.

• Virtuality of proton in deuteron

Effective e^+e^- mass squared:

$$\mathcal{M}_{e^+e^-}^2 = (p_{\bar{p}} + p_p)^2 = (E_{\bar{p}} + E_p)^2 - (\vec{p}_{\bar{p}} + \vec{p}_p)^2$$

Proton is off mass shell: $m_p^{*2} = p_p^2 = t < m_p^2$

Proton momentum and virtuality

Effective e^+e^- mass squared:

$$\mathcal{M}_{e^+e^-}^2 = (p_{\bar{p}} + p_p)^2 = (E_{\bar{p}} + E_p)^2 - (\vec{p}_{\bar{p}} + \vec{p}_p)^2$$

where $E_p = E_d - E_n$, $\vec{p_p} = \vec{p_d} - \vec{p_n}$. The proton mass does not appear here. It is replaced by the virtual mass $m^{*2} = t < m^2$

For $p_{\overline{p}} = 1.5$ GeV/c and z = 1, $m^{*2} = (0.85m)^2$. To get $\mathcal{M}_{e^+e^-} = 2m$, we need:

> If $m^{*2} = m^2$, then $p_p = 1500$ MeV/c Since $m^{*2} = (0.85m)^2$, then $p_p = 360$ MeV/c

We need not so high momenta in deuteron, for which momentum distribution is well known.

• Nucleus as a source of not so fast but off-mass shell protons

Little decrease of the proton mass $m \to m^* = 0.85m$ due to the off-shellness allows to reduce the proton momentum $p = 1.5 \to 0.36 \ GeV/c$ and still to get the e^+e^- mass near $\bar{p}p$ threshold. Protons with p = 0.36 GeV/c are not seldom! This was a physical explanation of what automatically happens in \overline{p} annihilation on deuteron.

Virtuality of proton in deuteron is **not** an assumption.

Remark: virtuality of proton $m^* = 0.85m$ does not mean change of the proton structure in nucleus.

• Numerical calculations

Cross section on free proton

$$\sigma_{0}(\mathcal{M}_{e^{+}e^{-}}) = \frac{\left|M_{\bar{p}p \to e^{-}e^{+}}\right|^{2}}{32\pi m p_{\bar{p},lab}} = \frac{2\alpha^{2}\pi (2m^{2} + \mathcal{M}_{e^{+}e^{-}}^{2})}{3\mathcal{M}_{e^{+}e^{-}}^{2}m p_{\bar{p},lab}}$$
$$p_{\bar{p},lab} = 1.5 \text{ GeV/c} \Rightarrow \mathcal{M}_{e^{+}e^{-}} = 2257 \text{ MeV/c}^{2}$$
$$\sigma_{0} \approx 40 \text{ } nb$$

 $\mathcal{M}_{e^+e^-}$ distribution

$$\frac{d\sigma}{d\mathcal{M}_{e^+e^-}} = \sigma_0(\mathcal{M}_{e^+e^-}) \ \eta(\mathcal{M}_{e^+e^-})$$

Near peak interval: 2100 MeV $\leq M_{e^+e^-} \leq$ 2350 MeV

Peak at $\mathcal{M}_{e^+e^-} = 2257 \text{ Mev} - \text{just}$ the $\overline{\Lambda}\Lambda$ threshold.

 $\mathcal{M}_{e^+e^-}$ distribution

More wide interval: 1750 MeV $\leq M_{e^+e^-} \leq 2350$ MeV

 $\mathcal{M}_{e^+e^-}$ distribution

Near $p\bar{p}$ threshold: 1830 MeV $\leq M_{e^+e^-} \leq$ 1930 MeV $\frac{d\sigma}{dM_{e^+e^-}}$ is in nb/MeV:

$$\frac{d\sigma}{d\mathcal{M}_{e^+e^-}}\Big|_{\mathcal{M}_{e^+e^-}=2m} \approx 1\frac{pb}{MeV} \quad -\text{for "pointlike" proton}$$

Seminar LPC, Clermont-Ferrand - p. 23/29

Annihilation on heavy nuclei

 $\bar{p}A \rightarrow e^+e^-(A-1)^*$

Residual nucleus (A - 1) may be excited (discrete and continuous spectrum).

$$\frac{d\sigma}{d\mathcal{M}_{e^+e^-}} = \sigma_0(\mathcal{M}_{e^+e^-}) \eta(\mathcal{M}_{e^+e^-}), \quad \eta(\mathcal{M}_{e^+e^-}) \sim \int_{-1}^1 dz \int_{E_{min}}^{E_{max}} dE$$
$$\int_{E_{min}}^\infty S(E,q) \, dE = n(q)$$

S(E,q) is nuclear spectral function n(q) is momentum distribution in nucleus.

Nuclear momentum distributions

A. Antonov et al., Phys. Rev. **C71**, 014317 (2005) A. Antonov et al., Phys. Rev. **C74**, 024603 (2006)

The tails of distributions are almost the same for all nuclei.

Mass distributions

$$\frac{d\sigma_{\bar{p}A\to e^+e^-X}}{d\mathcal{M}_{e^+e^-}} = Z\sigma_0(\mathcal{M})_{e^+e^-} \eta_A(\mathcal{M}_{e^+e^-}), \quad \eta_A(\mathcal{M}_{e^+e^-}) \sim \int_{-1}^1 dz n_A(\mathcal{M}_{e^+e^-}) dz n_A(\mathcal{M}_{e^+e^-}) = Z\sigma_0(\mathcal{M})_{e^+e^-} \eta_A(\mathcal{M}_{e^+e^-}), \quad \eta_A(\mathcal{M}_{e^+e^-}) \sim \int_{-1}^1 dz n_A(\mathcal{M}_{e^+e^-}) dz n_A(\mathcal{M}_{e^+e^-}) = Z\sigma_0(\mathcal{M})_{e^+e^-} \eta_A(\mathcal{M}_{e^+e^-}), \quad \eta_A(\mathcal{M}_{e^+e^-}) \sim \int_{-1}^1 dz n_A(\mathcal{M}_{e^+e^-}) dz n_A(\mathcal{M}_{e^+e^-}) = Z\sigma_0(\mathcal{M})_{e^+e^-} \eta_A(\mathcal{M}_{e^+e^-}), \quad \eta_A(\mathcal{M}_{e^+e^-}) \sim \int_{-1}^1 dz n_A(\mathcal{M}_{e^+e^-}) dz n_A(\mathcal{M}_{e^+e^-}) = Z\sigma_0(\mathcal{M})_{e^+e^-} \eta_A(\mathcal{M}_{e^+e^-}),$$

$$\frac{d\sigma_{\bar{p}A\to e^+e^-X}}{d\mathcal{M}_{e^+e^-}} \approx 6.5Z \; \frac{pb}{MeV}$$

$$Z(C^{12}) = 6$$
, $Z(Fe^{56}) = 26$, $Z(Au^{197}) = 79$

$$\sigma(C^{12}) = 39 \ pb, \quad \sigma(Fe^{56}) = 169 \ pb, \quad \sigma(Au^{197}) = 513 \ pb$$

– Seems quite measurable. However, luminosity for heavy nuclei is much smaller than for deuteron (Helene Fonvieille).

Measuring form factor

$$\frac{d\sigma}{d\mathcal{M}_{e^+e^-}} = \sigma_0(\mathcal{M}_{e^+e^-}) \ \eta(\mathcal{M}_{e^+e^-}^2) \ F^2(\mathcal{M}_{e^+e^-}), \quad \mathcal{M}_{e^+e^-}^2 \equiv q^2$$

In general, form factor depends on three off-shell variables:

$$F = F(q^2, p_p^2, p_{\overline{p}}^2)$$

In annihilation on nucleus it is off-shell in two variables:

$$F = F(q^2, p_p^2 \le (0.85m)^2, m^2)$$

Whereas, the structures are predicted for:

$$F = F(q^2, m^2, m^2)$$

Proton form factor

Do the structures in

 $F = F(q^2, m^2, m^2)$

survive in the off-shell form factor

$$F = F(q^2, p_p^2 \le (0.85m)^2, m^2) \quad ?$$

– Most probably, yes, but, strictly speaking, unknown. One can expect that the dependence of $F(q^2, p_p^2, m^2)$ on p_p^2 is smooth. Therefore, the structures, most probably, survive.

Conclusion

- In annihilation of fast anti-protons on deuteron (~ 1.5 GeV/c), the production of the e^+e^- pair near $\overline{N}N$ threshold does not require extremely high proton momenta, since the proton is off-mass shell.
- Because of that, the cross section is not negligiblely small:

$$\left. \frac{d\sigma}{d\mathcal{M}_{e^+e^-}} \right|_{\mathcal{M}_{e^+e^-}=2m} \approx 1 \frac{pb}{MeV}$$

Can it be measured at Panda?

To be continued by Helene Fonvieille.