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• Why is it interesting?
Since the near-threshold N̄N domain is not a desert, but
the structures are expected.
Proton form factor at −10 GeV 2 ≤ q2 ≤ 10 GeV 2:

p p   -->  e+ e-e- p  -->  e- p

U. Meissner et al., Nucl. Phys. A 666 (2000) 51.
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• Why is it interesting?

Observed structure in e+e− → π+π−π+π−π0π0

below N̄N threshold.
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• N̄N interaction v.s.NN

e+e− interaction v.s. e−e−

Ve+e−(r) = −Ve−e−(r)

since the charges of e− and e+ are opposite.

VNN (r) = Vπ(r) + Vρ(r) + Vω(r) + Vη(r) + Vσ1
(r) + Vσ2

(r)

VN̄N (r) = −Vπ(r) + Vρ(r)−Vω(r) + Vη(r)−Vσ1
(r) + Vσ2

(r)

Since: Gπ = Gω = Gσ1
= −1, Gη = Gρ = Gσ0

= +1

G = C exp(iI2) is the G-parity (C is the charge parity).
Seminar LPC, Clermont-Ferrand – p. 4/29



• N̄N resonances

I.S. Shapiro, Physics Reports, 35 (1978) 129.

Bound states and resonances in the N̄N system are
possible.

If they exist, they manifest themselves as structures in the
time-like nucleon near-threshold form factor (below and
above threshold).
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What to do if p̄’s are fast?

Panda will provide p̄ with pp̄,lab ≥ 1500 MeV/c.
In p̄p collision at pp̄,lab ≥ 1500 MeV/c., c.m. mass energy:√
s = 2257 MeV.

– Far from p̄p threshold 2m = 1880 MeV
(but close to ΛΛ̄ threshold).

Possibilities:

Deaccelerate p̄ (impossible at PANDA).

Take a nuclear target.
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• Annihilation on proton

s

,q2=m *2=s>4m
p
2

e-e+

ppbar

In annihilation on proton: q2 > 4m2
p, since all the p̄p energy

is transfered to the e+e− pair.
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• Annihilation on deuteron

m *2=q2>4m
e
2

n

e-

e+

dpbar

In annihilation on deuteron: q2 > 4m2
e since the p̄p energy

can be transfered to the neutron. Virtual γ∗ (mass of e+e−)
can be very light.
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• Impulse approximation

F(q2) *

p

pbar

e+

e-

n

d

For fixed e+e− mass Me+e−, we have two-body kinematics.
When mass Me+e− varies, we can calculate mass
distribution dσ

dM
e+e−

.
Amplitude:

Mp̄d→ne+e− ∼ ψd Mp̄p→e+e− F (q2)

Seminar LPC, Clermont-Ferrand – p. 9/29



• Cross section

Cross section:

dσp̄d→ne+e− ∼
∫

ψ2
d M

2
p̄p→e+e− F

2(q2) dV3

V3 is three-body phase volume.
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• Differential cross section

dσ

dMe+e−
= σ0(Me+e−) η(Me+e−)

where

σ0(Me+e−) =

∣

∣Mp̄p→e−e+

∣

∣

2

32πmpp̄,lab
=

2α2π(2m2 + M2
e+e−)

3M2
e+e−mpp̄,lab

,

– cross section on free proton

η(Me+e−) =
mp∗nMe+e−

(2π)2
√
s

∫ 1

−1

|ψ(k)|2dz.

– e+e− mass distribution.
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• Argument of wave function

η(Me+e−) =
mp∗

M
e+e−

nMe+e−

(2π)2
√
s

∫ 1

−1

|ψ(k)|2dz.

z = cos θ, θ is the angle between ~pd and ~pn momenta in c.m.
frame of reaction p̄d.

t = (pd − pn)2 = M2
d − 2(E∗

dE
∗
n − z p∗dp

∗
n) +m2

k2 =
1

4M2
d

(M2
d +m2 − t)2 −m2

t=(p
d
-p

n
)2=p

p
2

*

p

pbar

e+

e-

n

d
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• Annihilation on free proton

On proton:

dσp̄p→e−e+

dMe+e−
= σ0(Me+e−) δ(Me+e− −√

spp̄)

On deuteron:

dσ

dMe+e−
= σ0(Me+e−) η(Me+e−)

Normalization of η(Me+e−):
∫

η(Me+e−)dMe+e− = 1 ⇐ automatic, not imposed

Effect of nucleus: dilation
δ(Me+e− −√

spp̄) ⇒ η(Me+e−).
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• Momentum of proton in deuteron

t=(p
d
-p

n
)2=p

p
2

*

p

pbar

e+

e-

n

d

The proton momentum ~pp and argument k depend on the
scattering angle θ.
For given M2

e+e− = (pp̄ + pp)
2 = (pe+ + pe−)2,

when −1 ≤ z ≤ 1, then k varies in the limits:

350 MeV/c ≤ k ≤ 1500 MeV/c

How is it possible to have so small k ≈ 350 MeV/c?
( instead of 1500 MeV/c)
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• Nucleus as a source of fast protons

Naively, we need very fast protons in nucleus:

2m
p, 1.5 GeV/c

pbar, 1.5 GeV/c

A
But protons with p = 1.5 GeV/c are very seldom.
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• Virtuality of proton in deuteron

t=(p
d
-p

n
)2=p

p
2

*

p

pbar

e+

e-

n

d

Effective e+e− mass squared:

M2
e+e− = (pp̄ + pp)

2 = (Ep̄ + Ep)
2 − (~pp̄ + ~pp)

2

Proton is off mass shell: m∗2
p = p2

p = t < m2
p
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• Proton momentum and virtuality

Effective e+e− mass squared:

M2
e+e− = (pp̄ + pp)

2 = (Ep̄ + Ep)
2 − (~pp̄ + ~pp)

2

where Ep = Ed − En, ~pp = ~pd − ~pn.
The proton mass does not appear here.
It is replaced by the virtual mass m∗2 = t < m2

For pp̄ = 1.5 GeV/c and z = 1, m∗2 = (0.85m)2.
To get Me+e− = 2m, we need:

If m∗2 = m2, then pp = 1500 MeV/c
Since m∗2 = (0.85m)2, then pp = 360 MeV/c

We need not so high momenta in deuteron, for which
momentum distribution is well known.
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• Nucleus as a source of not so fast
but off-mass shell protons

m*=0.85 m
N

2m
p, 0.36 GeV/c

pbar, 1.5 GeV/c

A

Little decrease of the proton mass m→ m∗ = 0.85m due to the
off-shellness allows to reduce the proton momentum
p = 1.5 → 0.36 GeV/c and still to get the e+e− mass near p̄p
threshold.
Protons with p = 0.36 GeV/c are not seldom!
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This was a physical explanation of what automatically
happens in p̄ annihilation on deuteron.

Virtuality of proton in deuteron is not an assumption.

Remark: virtuality of proton m∗ = 0.85m does not mean
change of the proton structure in nucleus.
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• Numerical calculations

Cross section on free proton

σ0(Me+e−) =

∣

∣Mp̄p→e−e+

∣

∣

2

32πmpp̄,lab
=

2α2π(2m2 + M2
e+e−)

3M2
e+e−

mpp̄,lab

pp̄,lab = 1.5 GeV/c ⇒ Me+e− = 2257 MeV/c2

σ0 ≈ 40 nb
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Me+e− distribution

dσ

dMe+e−
= σ0(Me+e−) η(Me+e−)

Near peak interval: 2100 MeV ≤ Me+e− ≤ 2350 MeV

Peak at Me+e− = 2257 Mev – just the Λ̄Λ threshold.
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Me+e− distribution

More wide interval: 1750 MeV ≤ Me+e− ≤ 2350 MeV

dσ

dMe+e−

∣

∣

∣

∣

M
e+e−

=1880 MeV

≈ 1

600

dσ

dMe+e−

∣

∣

∣

∣

M
e+e−

=2257 MeV
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Me+e− distribution

Near pp̄ threshold: 1830 MeV ≤ Me+e− ≤ 1930 MeV
dσ

dM
e+e−

is in nb/MeV:

dσ

dMe+e−

∣

∣

∣

∣

M
e+e−

=2m

≈ 1
pb

MeV
–for "pointlike" proton
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Annihilation on heavy nuclei

p̄A→ e+e−(A− 1)∗

Residual nucleus (A− 1) may be excited (discrete and
continuous spectrum).

dσ

dMe+e−
= σ0(Me+e−) η(Me+e−), η(Me+e−) ∼

∫ 1

−1

dz

∫ Emax

Emin

dE S(E,

∫ ∞

Emin

S(E, q) dE = n(q)

S(E, q) is nuclear spectral function
n(q) is momentum distribution in nucleus.
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Nuclear momentum distributions

A. Antonov et al., Phys. Rev. C71, 014317 (2005)
A. Antonov et al., Phys. Rev. C74, 024603 (2006)

                
                

 k [fm-1]
(GeV/c)0 0.2 0.4 0.6 0.8 1.0

The tails of distributions are almost the same for all nuclei.
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Mass distributions

dσp̄A→e+e−X

dMe+e−
= Zσ0(M)e+e− ηA(Me+e−), ηA(Me+e−) ∼

∫ 1

−1

dznA(q)

dσp̄A→e+e−X

dMe+e−
≈ 6.5Z

pb

MeV

Z(C12) = 6, Z(Fe56) = 26, Z(Au197) = 79

σ(C12) = 39 pb, σ(Fe56) = 169 pb, σ(Au197) = 513 pb

– Seems quite measurable. However, luminosity for heavy
nuclei is much smaller than for deuteron (Helene Fonvieille).
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Measuring form factor

dσ

dMe+e−
= σ0(Me+e−) η(M2

e+e−) F 2(Me+e−), M2
e+e− ≡ q2

In general, form factor depends on three off-shell variables:

F = F (q2, p2
p, p

2
p̄)

In annihilation on nucleus it is off-shell in two variables:

F = F (q2, p2
p ≤ (0.85m)2,m2)

Whereas, the structures are predicted for:

F = F (q2,m2,m2)
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Proton form factor

Do the structures in

F = F (q2,m2,m2)

survive in the off-shell form factor

F = F (q2, p2
p ≤ (0.85m)2,m2) ?

– Most probably, yes, but, strictly speaking, unknown.
One can expect that the dependence of F (q2, p2

p,m
2) on p2

p

is smooth. Therefore, the structures, most probably, survive.
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Conclusion

In annihilation of fast anti-protons on deuteron (∼ 1.5
GeV/c), the production of the e+e− pair near N̄N
threshold does not require extremely high proton
momenta, since the proton is off-mass shell.

Because of that, the cross section is not negligiblely
small:

dσ

dMe+e−

∣

∣

∣

∣

M
e+e−

=2m

≈ 1
pb

MeV

Can it be measured at Panda?

To be continued by Helene Fonvieille.
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