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Context
Gravitational waves

Precursor? Gamma-ray
    Burst

Abbott et al. (2017)

I Recent joint detection of
EM and GW waves ⇒
Signature of a binary
neutron star merger

I Multi-messenger
astronomy

I Electromagnetic
precursor signal?

B. Crinquand Binary pulsar merger 2 / 22



Context
Pulsar radiation
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Spectral energy distribution of the Crab
pulsar (black) and the Crab nebula (blue).
Bülher et al. (2014)

I Wealth of observation
from pulsars, from radio
to γ ray

I Non-thermal emission ⇒
Particle acceleration from
pulsars

I Mostly synchrotron
radiation (+ Inverse
Compton)
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Context
Magnetospheric structure

z

Ω

RLC = c/Ω

R?

R

Current sheet
Y-point

Force-free regime
Dense, magnetized plasma:

ρE + j ×B/c = 0

Main features

I Open magnetic field lines

I Growth of a toroidal component
Bϕ

I Outgoing Poynting flux

w
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Context
State of the art

Plasma simulations

1 MHD fluid simulations
Drawback: cannot capture
microphysics

2 Kinetic simulations
Drawback: greater computational
cost

State of the art

I 2D particle-in-cell spherical
simulations performed by Cerutti
et al.

�

Isolated pulsar case well
understood

I Unfit to model a binary pulsar

⇒ We developed a 2D PIC cylindrical code to simulate a binary merger in
an axisymmetrical setup
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Consistency checks
Force-free aligned dipole

ΩM
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Consistency checks
Spindown
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Normalized Poynting flux through a
sphere of radius r around the pulsar.

Force-free spindown

L0 ∼
B2

0R
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0Ω4

4µ0c3
(1)

Dissipation: energy transferred to
the particles through magnetic
reconnection in the current
sheet

�

Radiative efficiency of a few %
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Numerical techniques
Two pulsar setup

R

z

Ω1

Ω2

M1

M2

Geometry
I Magnetix and spin axes all

aligned with the symmetry axis

I → Orbital motion neglected

I Two configurations of interest:
Parallel and Anti-parallel spin
axes, with parallel magnetic
moments
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Numerical techniques
Two pulsar setup

R

z

Ω1

Ω2

δr
R?

RLC

RpmlRmax

ϕ Initial conditions
I Rotation of a perfect conductor

induces an electric field:
E + (Ω× r)×B/c = 0 inside a star

I Particles are launched from the
stellar surface with corotation

Boundary conditions
I Cylindrical symmetry on the axis

I Outer boundary: fields are damped
through numerical resistivity ⇒ No
reflection
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Numerical techniques
Two pulsar setup

r

z

Ω1

a(t)

±Ω2

I Pair creation if a particle gets too
energetic → Secondary pair
generation in real pulsars

I Simulation stops when the stars
touch

Variable separation

a(t) = a0(1− 4t/τ)1/4 (2)

Inspiral due to the emission of
gravitational waves
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Results
Parallel configuration

Ω1M1

M2 Ω2
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Results
Parallel configuration

Main feature: “Midway”
current sheet → Prominent

site for reconnection
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Results
Radiation

Parallel configuration

Electrons Positrons

η‖ = 21.3% → Reconnection layer inside the light cylinder
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Results
Anti-parallel configuration

Ω1M1

M2 Ω2
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Results
Anti-parallel configuration
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Main feature: Twisted field lines
⇒ Emf between the stars ⇒ Poloidal currents and pair creation
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Results
Radiation

Anti-parallel configuration

Electrons Positrons

η6 ‖ = 22.5% → Enhanced radiation at inner poles
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Binary merger: an observable signature?

Ω1M1

M2 Ω2

Lightcurve
constructed by
collecting photons
according to the
observation angle
and their time
delay
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Binary merger: an observable signature?
Lightcurve
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I Before merger: Parallel and anti-parallel configurations different
I After merger: Similar lightcurves → Common mechanism
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Binary merger: an observable signature?
Common mechanism

Parallel Anti-parallel

Poloidal field discontinuity at z = 0 that dominates the toroidal
discontinuity in both configurations

⇒ Current sheet, magnetic reconnection site

B. Crinquand Binary pulsar merger 19 / 22



Binary merger: an observable signature?
Outburst
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I Radiation mainly emitted
in the equatorial plane

I Signal not strongly
anisotropic
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Binary merger: an observable signature?
Outburst
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I Great increase in bolometric
luminosity: Total radiated
power increases by one to two
orders

�

Energy flux ∼ 1038 erg/s
I Merger event GW170817:

output power ∼ 1046 erg/s,
just above Fermi-GBM
sensitivity

I Hope for radio detection
(better sensitivity)
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Conclusion and outlooks

1 Asymetric simulations
(B0,up/B0,down = 4,
Ωup/Ωdown ∼ 0.25): more
realistic setup

2 More pessimistic expectations
than theoretical works

3 3D simulations with orbital
motion would probably yield a
more powerful outburst

4 Relation to Fast Radio Bursts? Artwork of the album Unknown
Pleasures by Joy Division.
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Thank you for your attention!
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