

Electromagnetic precursor of a binary neutron star coalescence

Benjamin Crinquand

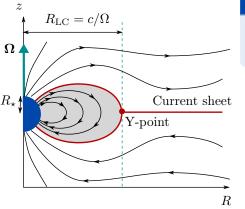
Institut de Planétologie et d'Astrophysique de Grenoble

October 2, 2018

Context Gravitational waves

- ► Recent joint detection of EM and GW waves ⇒ Signature of a binary neutron star merger
- Multi-messenger astronomy
- Electromagnetic precursor signal?

Abbott et al. (2017)



Spectral energy distribution of the Crab pulsar (black) and the Crab nebula (blue). Bülher et al. (2014)

- Wealth of observation from pulsars, from radio to γ ray
- ▶ Non-thermal emission ⇒ Particle acceleration from pulsars
- Mostly synchrotron radiation (+ Inverse Compton)

Force-free regime

Dense, magnetized plasma:

 $\rho \boldsymbol{E} + \boldsymbol{j} \times \boldsymbol{B}/c = \boldsymbol{0}$

Main features

- ▶ Open magnetic field lines
- Growth of a toroidal component B_{φ}
- ► Outgoing Poynting flux

B. Crinquand

BINARY PULSAR MERGER

Plasma simulations

MHD fluid simulations

Drawback: cannot capture microphysics

2 Kinetic simulations

Drawback: greater computational cost

Plasma simulations

MHD fluid simulations

Drawback: cannot capture microphysics

2 Kinetic simulations

Drawback: greater computational cost

 $State \ of \ the \ art$

- ► 2D particle-in-cell *spherical* simulations performed by Cerutti *et al.*
 - $\, \flat \,$ Isolated pulsar case well understood
- ▶ Unfit to model a binary pulsar

B. Crinquand

BINARY PULSAR MERGER

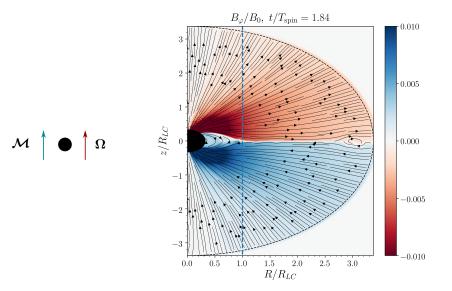
Plasma simulations

MHD fluid simulations

Drawback: cannot capture microphysics

2 Kinetic simulations

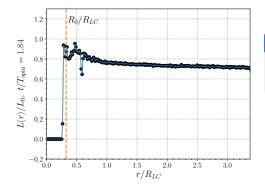
Drawback: greater computational cost

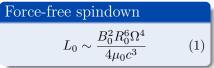

$State \ of \ the \ art$

- ► 2D particle-in-cell *spherical* simulations performed by Cerutti *et al.*
 - $\, \flat \,$ Isolated pulsar case well understood
- ▶ Unfit to model a binary pulsar

 \Rightarrow We developed a 2D PIC cylindrical code to simulate a binary merger in an axisymmetrical setup

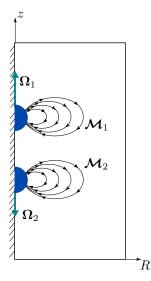
Consistency checks Force-free aligned dipole




B. Crinquand

BINARY PULSAR MERGER

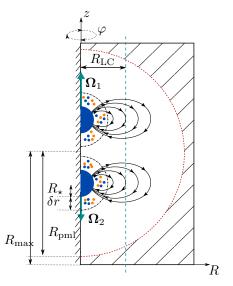
Normalized Poynting flux through a sphere of radius r around the pulsar.



Dissipation: energy transferred to the particles through **magnetic reconnection** in the current sheet

 ${\,\triangleleft\,} {\rm Radiative}$ efficiency of a few %

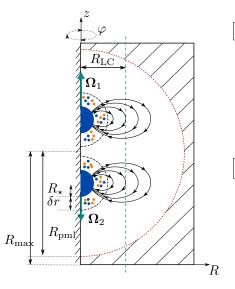
Numerical techniques Two pulsar setup



Geometry

- Magnetix and spin axes all aligned with the symmetry axis
- \blacktriangleright \rightarrow Orbital motion neglected
- ► Two configurations of interest: *Parallel* and *Anti-parallel* spin axes, with parallel magnetic moments

Numerical techniques Two pulsar setup

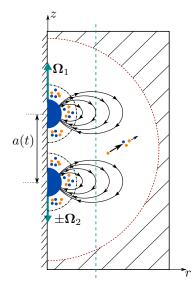

Initial conditions

- ► Rotation of a perfect conductor induces an electric field: $E + (\Omega \times r) \times B/c = 0$ inside a star
- Particles are launched from the stellar surface with corotation

Numerical techniques

Two pulsar setup

Initial conditions

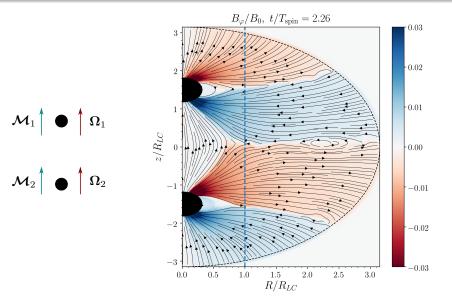

- ► Rotation of a perfect conductor induces an electric field: $E + (\Omega \times r) \times B/c = 0$ inside a star
- Particles are launched from the stellar surface with corotation

Boundary conditions

- Cylindrical symmetry on the axis
- ► Outer boundary: fields are damped through numerical resistivity ⇒ No reflection

Numerical techniques Two pulsar setup

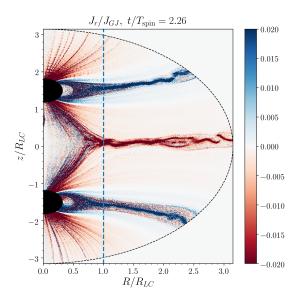
- ► Pair creation if a particle gets too energetic → Secondary pair generation in real pulsars
- Simulation stops when the stars touch


Variable separation

$$a(t) = a_0 (1 - 4t/\tau)^{1/4}$$
 (2)

Inspiral due to the emission of gravitational waves

Results Parallel configuration



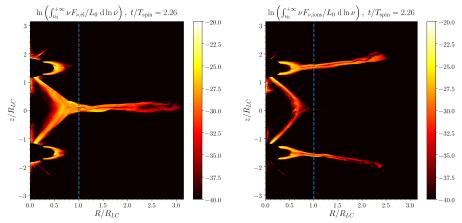
B. Crinquand

BINARY PULSAR MERGER

Main feature: "Midway" current sheet \rightarrow Prominent site for reconnection

B. Crinquand

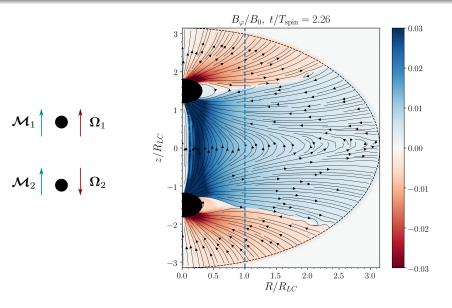
BINARY PULSAR MERGER


$\underset{\mathrm{Radiation}}{\mathrm{Results}}$

$Parallel\ configuration$

Electrons

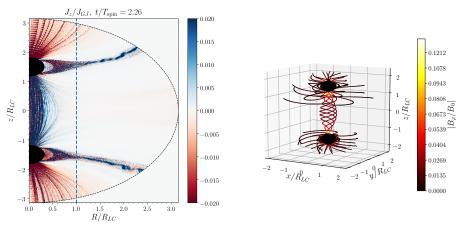
Positrons


 $\eta_{\parallel} = 21.3\% \rightarrow \text{Reconnection}$ layer inside the light cylinder

B. Crinquand

BINARY PULSAR MERGER

Results Anti-parallel configuration


B. Crinquand

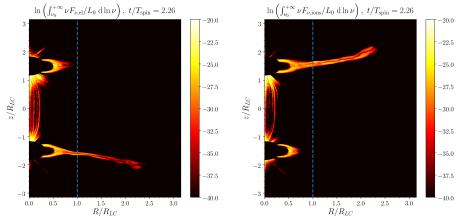
BINARY PULSAR MERGER

Results Anti-parallel configuration

B. Crinquand

Main feature: Twisted field lines \Rightarrow Emf between the stars \Rightarrow Poloidal currents and pair creation

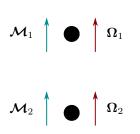
BINARY PULSAR MERGER


$\underset{\mathrm{Radiation}}{\mathrm{Results}}$

$Anti-parallel\ configuration$

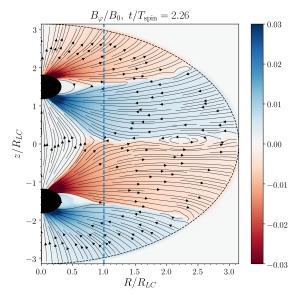
Electrons

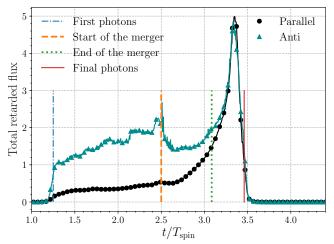
Positrons



 $\eta_{\rm M} = 22.5\% \rightarrow$ Enhanced radiation at inner poles

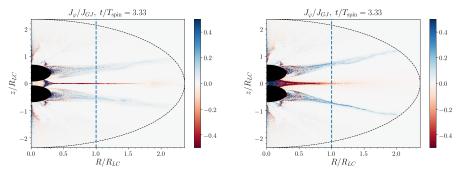
B. Crinquand


BINARY PULSAR MERGER


Lightcurve constructed by collecting photons according to the observation angle and their time delay

B. Crinquand

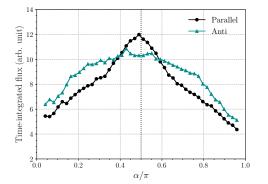
BINARY PULSAR MERGER


▶ Before merger: Parallel and anti-parallel configurations different

▶ After merger: Similar lightcurves \rightarrow Common mechanism

B. Crinquand

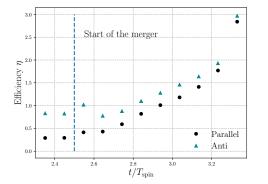
BINARY PULSAR MERGER


Anti-parallel

Poloidal field discontinuity at z = 0 that dominates the toroidal discontinuity in both configurations \Rightarrow Current sheet, magnetic reconnection site

B. Crinquand

BINARY PULSAR MERGER



- Radiation mainly emitted in the equatorial plane
- Signal not strongly anisotropic

B. Crinquand

BINARY PULSAR MERGER

• Great increase in bolometric luminosity: Total radiated power increases by one to two orders

 ${}^{\downarrow}$ Energy flux $\sim 10^{38}~{\rm erg/s}$

- ► Merger event GW170817: output power ~ 10⁴⁶ erg/s, just above Fermi-GBM sensitivity
- Hope for radio detection (better sensitivity)

Conclusion and outlooks

- Asymetric simulations $(B_{0,up}/B_{0,down} = 4,$ $\Omega_{up}/\Omega_{down} \sim 0.25)$: more realistic setup
- 2 More pessimistic expectations than theoretical works
- **3** 3D simulations with orbital motion would probably yield a more powerful outburst
- **4** Relation to Fast Radio Bursts?

Artwork of the album Unknown Pleasures by Joy Division.

Thank you for your attention!