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Compact sources and relativistic ejection
Ultra-relativistic jets
Shock waves
Time-dependent radiative transfert at high-energy
Population models
Etc.
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GRB physics

= Cosmological distance: huge radiated energy (E,, ~ 10°°-10>* erg)
= Variability + energetics: violent formation of a stellar mass BH/magnetar

Long GRBs: collapse of a massive star
Short GRBs: NS+NS(/BH ?)merger(?) [GRB170817/GW170817A]
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GRB physics

= Variability + energetics + gamma-ray spectrum: relativistic ejection
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GRB physics

= Variability + energetics + gamma-ray spectrum: relativistic ejection

= Prompt keV-MeV emission: internal origin in the ejecta
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GRB physics

= Variability + energetics + gamma-ray spectrum: relativistic ejection
= Prompt keV-MeV emission: internal origin in the ejecta

= Afterglow: deceleration by ambient medium
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Some questions about GRB Physics

Central engine:  nature (BH, magnetar)? Ejection mechanism?

GRB outflows:  -how relativistic are GRB outflows?
-how magnetized are GRB outflows?
-what is the geometry? (opening angle, lateral structure, ...)
Prompt emission: -emission site?
-particle acceleration? Radiative processes?
Afterglow: -emission site? Relative role of reverse and forward shocks?
-origin of the observed diversity and variability?

Long GRBs: -precise nature of progenitors?
-correlations between energetics and spectrum?
-origin of the observed diversity (soft GRBs, low-L GRBs, ...)
Short GRBs: -how different is the physics (compared to long GRBs)?
-what is the precise link with NS-NS/BH mergers?
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How relativistic are GRB outflows?

Relativistic motion:
-Direct (in a few cases): apparent super-luminal motion
-Indirect: necessary to avoid a strong yy annihilation

-Other indirect methods: rise of the afterglow, etc.



‘How relativistic are GRB outflows? yy constraints using Fermi

Detailed calculation:

space/time/direction-dependent radiation field

Eiy W) the estimate of I, is reduced by a factor ~ 2-3
E WM (see Granot et al. 2008; Hascoét, Daigne, Mochkovitch & Vennin 2012)
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First observation of the yy cutoff 7

= GRB 090926A (Fermi-LAT): 2 souf
first observed cutoff at high-energy $ )
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First observation of the yy cutoff 7

= GRB 090926A (Fermi-LAT): first observed cutoff at high-energy (Ackermann et al. 2011)

= New analysis and interpretation: cutoff detected in several bins,
strong constraint on Lorentz factor and emission radius
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First observation of the yy cutoff 7

= GRB 090926A (Fermi-LAT): first observed cutoff at high-energy (Ackermann et al. 2011)

= New analysis and interpretation: cutoff detected in several bins,
strong constraint on Lorentz factor and emission radius!
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Modelling GRB prompt and afterglow emission

Models developped at |AP:

= Dynamics:  ballistic approach
internal / externa reverse-+forward shock
validation by fully relativistic hydro simulations

= Microphysics: parametrized (&g, €., C, P, .. .)
= Radiation:  time-dependent radiative code adapted to fast cooling
(synchrotron emission and self-abs ; inverse Compton including KN ;

pair production ; adiabatic cooling) — no secondary leptons

= |ntegration over equal-arrival time surfaces + cosmological effects:
simulated light curves and spectra

= Specific calculation for photospheric emission



Spectral evolution

‘ Example of a simulated GRB pulse produced by internal shocks
(full simulation: dynamics+radiation)

© © ©
o~ o @

Normalized photon flux

o
20

Light curve in BATSE range :
channels 1 (blue) to 4 (red)

Bosnjak & Daigne 2014



Spectral evolution

Example of a simulated GRB pulse produced by internal shocks
(full simulation: dynamics-+radiation)
Evolution of E ., and ot Time-evolving spectrum
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Prompt GeV emission from internal shocks
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X-ray flares produced by a long-lived RS:
an indirect evidence for shocks within the ejecta?
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A-ray flares

-propagation of the reverse shock in a structured outflow

-a signature of internal shocks?
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An exemple of the distribution of
Lorentz factor in the ejecta:
(relativistic hydro simulation)
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A-ray flares

-propagation of the reverse shock in a structured outflow

-a signature of internal shocks?
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A-ray flares

-propagation of the reverse shock in a structured outflow
-a signature of internal shocks?
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A-ray flares

-propagation of the reverse shock in a structured outflow
-a signature of internal shocks?

prompt afterglow
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Flares are produced when the RS crosses a dense shell formed in the IS phase

Hascoét, Beloborodov, Daigne & Mochkovitch, 2017



A-ray flares

-propagation of the reverse shock in a structured outflow
-a signature of internal shocks?

= Relativistic 1D hydrocode L [
= Moving Eulerian grid N
= |nitial states: UR head-+tail+variability e 9
r, hydro simulation P
............ \ 10 ———++ : : :y:::::h: : 1}
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Figure 7. Lorentz factor in run5, which includes variability in the tail region and a slower head region. The upper and lower panels show the Lorentz

.th fI ct d h ks factor in the shocked material behind the forward shock (ES), reverse shock (RS) and the internal forward (IFS) and backwards propagating shocks (IRS) in
WI re e e S Oc the hydrodynamic simulation and ballistic model respectively. Sudden variations are indicated with numbers and vertical lines and are detailed in the text.

Lamberts & Daigne, 2017



A-ray flares

-propagation of the reverse shock in a structured outflow

-a signature of internal shocks?

= Relativistic 1D hydrocode
= Moving Eulerian grid
= |[nitial states: UR head+tail+variability

r -1 0 M

Ty

ini A box
Regge

= Hares are present in
the bolometric lightcurve

Lamberts & Daigne, 2017
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Figure 8. Bolometric light curves of the forward shock (left column) and internal and reverse shocks (right column) assuming isotropic emission in
the comoving frame. The five main runs are shown (color coded), comparing the simulations (upper row) and the ballistic model (lower row). On the top-left
panel, the magenta dashed line shows the t:bl_\, (Blandford & McKee 1976) self-similar solution. The dotted vertical lines indicate the time beyond which some
of the off-axis emission is missing because the reverse shock has left the simulation domain. As seen in the right column, internal dissipation leads to flare-like

features for t,ps = 70 s in run4 and runS5.



A-ray flares
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Figure 9. Contribution to the bolometric lightcurves of the different shocks in run5 (left) and run5b (right). We separately show the energy dissipation
at the forward shock (FS) and the sum of all the internal dissipation (IFS+IRS+FS), and compare with the ballistic model (blue). The flares and rebrightenings
are shown by arrow and shaded regions, respectively.

Lamberts & Daigne, 2017



Some questions about GRB Physics

Central engine:  nature (BH, magnetar)? Ejection mechanism?

GRB outflows:  -how relativistic are GRB outflows?
-how magnetized are GRB outflows?
-what is the geometry? (opening angle, lateral structure, ...)
Prompt emission: -emission site?
-particle acceleration? Radiative processes?
Afterglow: -emission site? Relative role of reverse and forward shocks?
-origin of the observed diversity and variability?

Long GRBs: -precise nature of progenitors?
-correlations between energetics and spectrum?
-origin of the observed diversity (soft GRBs, low-L GRBs, ...)
Short GRBs: -how different is the physics (compared to long GRBs)?
-what is the precise link with NS-NS/BH mergers?



Population model for long GRBs

Part of the PhD work of Jesse Palmerio (defense: September 19, 2018)

= (eneration of synthetic intrinsic populations for a set of parameters
(luminosity function, rate(z), ...): MC

= Set of carefully selected constraints (BATSE, GBM, Swift)

= Exploration of parameter space: MCMC



GRB efficiency (GRB/core-collapse) evolves with redshift
— progenitors? Role of metallicity? ...

= A weak evolution of the luminosity function is possible

= Anintrinsic L-Ep correlation is slightly favored

Long GRBs: .
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Electromagnetic counterparts to NS-NS/BH mergers
The short GRB-merger connection

Physics of the short GRB-afterglow — Study of the short GRB-merger connection
=PhD project of Raphaél Duque (starting October 1st, 2018)

Kilonova: rates? Production of r-process elements and chemical evolution?
=on-going project with Irina Dvorkin, Elisabeth Vangioni, Stéphane Goriely
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‘Remnant of N5+N5S merger:

I Radioactively powered emission
(kilonova: visible-IR)
+ afterglow (radio) 7

Short GRB?
Afterglow
W (Relativistic?) ejecta

R-process -acceleration?
B decay -composition?
-geometry?

= BH/magnetar
L + accretion torus

-mass, spin’?
-Disk mass?

(EOS...)
s

Quasi-spherical ejecta
(several components?)




Remnant of NS+NS merger: Obs.

‘ Radioactively powered emission
(kilonova: visible-IR)

™\

Nals 1+2+5 — 50-300 keV

256 ms bins
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§~Short GRB?
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N> Afterglow

Flux density (u)y)
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1 keV x 2500

The case of 170817

Alexander et al. 2018



Questions:

GRB170817A: atypical (not very hard, very under-luminous)
-physical origin?
-would an on-axis observer have seen a standard short GRB?
-consequences for the short-GRB-merger connection?

= Afterglow:  long-term evolution (still observed in radio)
many observations (including polarization, VLBI: proper motion)
-geometry: radial vs lateral structure?
-signature of a central jet?
-counterparts at high-energy?

= Population:  evolution of the expected counterparts when varying
-viewing angle
-distance

= Ftc.

= More events during 037



Conclusion

Modélisation physique des sursauts gamma :

= Une physique tres riche

= Une modélisation difficile

= Un age d’or pour les observations
Beppo-SAX ; HETE-2 ; Swift ; Fermi

LIGO/Virgo — 2019: prise de données 03
2021+: SVOM)
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Un poste de maitre de conférences en section 34/29
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