Modélisation numérique des étoiles à neutrons

Jérôme Novak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

en collaboration avec N. Chamel, D. Chatterjee, M. Marques, M. Oertel & A. Sourie

Journées Théorie-PNHE, IAP, le 2 octobre 2018

The complex physics of compact stars

The description of compact stars involves many different fields of physics, with overall conditions that can hardly be tested on Earth:

- cold, highly asymmetric nuclear matter (talk by M. Oertel),
- very strong gravitational field (last stage before black hole),
- intense magnetic field, up to $\sim 10^{17} \ {\rm G}, \label{eq:generalized}$
- rapid rotation, implying relativistic fluid velocities.

 \Rightarrow need for theoretical models, often involving numerical simulations

Some neutron star observation PROJECTS

NICER is a soft X-ray telescope onboard the ISS, to observe X-ray binaries with millisecond pulsars \Rightarrow determination of radius with ~ 5% accuracy.

 \Rightarrow results expected very soon...

Neutron star Interior Composition ExploreR (NICER)

SKA shall bring many accurate observations able to constrain neutron star:

- Masses (increase of mass determination by a factor ~ 10)
- Moments of inertia \Rightarrow radius
- Rotation frequencies / glitches ...

Need for very accurate models!

Numerical models of rotating neutron stars with:

- Magnetic field
- Superfluidity
- Thermal effects

MAGNETIC FIELD

NUMERICAL MODELS

- Perfect conductor + independent currents
- Maxwell equations and equilibrium with Lorentz force.
- Poloidal magnetic field, moment aligned with rotation axis

MAGNETIC FIELD

EFFECT ON THE EOS

Many studies on effect of strong ($\gtrsim 10^{16}$ G) magnetic fields on properties of nuclear matter: EoS $p(\varepsilon, B)$. \Rightarrow Starting from a microscopic Lagrangian density of fermions coupled to an electromagnetic field, new model for the energy-momentum tensor and contribution to Einstein-Maxwell equations (Chatterjee *et al.* 2015)

Chatterjee et al. (2015)

- First global model including magnetization (microscopic interaction between matter and magnetic field)
- Model shows no additional term in equilibrium equation (cancellation)
- Effect small with quark matter EoS: other possibilities?

SUPERFLUIDITY

MOTIVATIONS

THEORETICAL

At nuclear density the critical temperature: $T_{\rm crit} \sim 1 \text{ MeV} \Rightarrow$ superfluid component some minutes after their birth.

Observational: GLITCHES

Some pulsars exhibit sudden changes in the rotation period: instead of regularly slowing down, it shows rapid speed-up.

- \Rightarrow Within the two-fluid framework:
 - outer crust (+fluid) is slowed down, not the inner fluid;
 - until the stress (or interaction) between both becomes larger than some threshold.
- \Rightarrow models in the two-fluid approach in Prix *et al.* (2005), Sourie *et al.* (2016)

Sourie et al. (2016)

SUPERFLUIDITY GLITCH MODELS

Modeling of the glitch rise time, e.g. for the Vela pulsar

- Observational constraints $\tau \lesssim 30$ s.
- Constraints on superfluid properties in neutron stars (drag to lift ratio).
- Effects of General Relativity are very strong.

Compactness
$$\Xi = \frac{GM}{Rc^2}$$
 with $\Xi_{\rm NS} \simeq 0.2$, see also Sourie *et al.* (2017)...

THERMAL EFFECTS

"Standard" models consider matter at zero temperature : neglect temperature effects.

 \Rightarrow Important for proto-neutron stars (birth) or, possibly, in the last phases of binary neutron star evolution (tidal heating). First attempt by Goussard *et al.* (1997) to build models with temperature-dependent EoS.

Similar approach to study universality

of I- Λ -Q relations:

- $I \Rightarrow$ moment of inertia
- $\Lambda \Rightarrow$ tidal deformability (determined by GW observations).
- $Q \Rightarrow$ quadrupole moment

 \Rightarrow breaking of universality for high, but realistic entropy effects.

Marques et al. (2017)

CONCLUSIONS

Observation / Analysis

- Neutron stars are now well-observed objects.
- Observations acquire much better accuracy (NICER, SKA,...)
- Better understanding of the physics (e.g. EoS)?

NUMERICAL MODELS

- Rotation, magnetic field easy to take into account.
- Superfluid models can give insight on glitch phenomena (more observations?).
- Elastic crust should be modeled, too (tough!).

Not a simple perfect-fluid-one-parameter-EoS approach. \Rightarrow Gravitational waves bring a lot of new information into the game (tidal deformability). Modelling of binary neutron stars...