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THE COMPLEX PHYSICS OF COMPACT
STARS

The description of compact stars involves many different fields
of physics, with overall conditions that can hardly be tested on
Farth:

@ cold, highly asymmetric nuclear
matter (talk by M. Oertel),

e very strong gravitational field
(last stage before black hole),

o intense magnetic field, up to
~ 1017 G,

e rapid rotation, implying
relativistic fluid velocities.

=need for theoretical models, often involving numerical
simulations



SOME NEUTRON STAR OBSERVATION

PROJECTS
NICER is a soft X-ray telescope onboard the
ISS, to observe X-ray binaries with
millisecond pulsars
=-determination of radius with ~ 5%
accuracy.
=results expected very soon. ..

Neutron star Interior
Composition ExploreR (NICER)

SKA shall bring many accurate observations z
able to constrain neutron star: 18
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e Rotation frequencies / glitches ... French SKA whitebook (2017)

Need for very accurate models! J




Numerical models of rotating neutron stars
with:

o Magnetic field
o Superfluidity

o Thermal effects



MAGNETIC FIELD

NUMERICAL MODELS

o Perfect conductor + independent currents
o Maxwell equations and equilibrium with Lorentz force.
e Poloidal magnetic field, moment aligned with rotation axis

Magnetic field Enthalpy
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Bp ~ 5 X 1016 G, Bocquet et al. (1995)

= determination of a “universal” profile for ||B|| (Chatterjee et
al. 2018).



MAGNETIC FIELD
EFFECT ON THE EOS

Many studies on effect of strong (> 10'® G) magnetic fields on
properties of nuclear matter: EoS p(e, B).
=-Starting from a microscopic Lagrangian density of fermions
coupled to an electromagnetic field, new model for the
energy-momentum tensor and contribution to Einstein-Maxwell
equations (Chatterjee et al. 2015)

e First global model including
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magnetization (microscopic

interaction between matter and
magnetic field)

@ Model shows no additional term
in equilibrium equation
: : (cancellation)
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o Effect small with quark matter
Chatterjee et al. (2015) EoS: other possibilities?



SUPERFLUIDITY

MOTIVATIONS

At nuclear density the critical temperature: T ~ 1 MeV =
superfluid component some minutes after their birth.

OBSERVATIONAL: GLITCHES

Some pulsars exhibit sudden changes in the rotation period:
instead of regularly slowing down, it shows rapid speed-up.

= Within the two-fluid framework:

~

e outer crust (+fluid) is slowed down, not
the inner fluid;

w

N

e until the stress (or interaction) between
both becomes larger than some
threshold.

particle densities (0.1 fm %)

o

protons

= models in the two-fluid approach in Prix
et al. (2005), Sourie et al. (2016)
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SUPERFLUIDITY

GLITCH MODELS

Modeling of the glitch rise time, e.g. for the Vela pulsar
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e Observational constraints 7 < 30 s.

e Constraints on superfluid properties
in neutron stars (drag to lift ratio).

o Effects of General Relativity are very
strong.

Compactness = = %ﬁﬁ with Zng ~ 0.2,

see also Sourie et al. (2017)...




THERMAL EFFECTS

“Standard” models consider matter at zero temperature :

neglect temperature effects.

=Important for proto-neutron stars (birth) or, possibly, in the
last phases of binary neutron star evolution (tidal heating).

First attempt by Goussard et al. (1997) to build models with

temperature-dependent EoS.
Similar approach to study universality

of I-A-Q) relations:
e [ = moment of inertia

o A =-tidal deformability
(determined by GW
observations).

e () =quadrupole moment

=-breaking of universality for high,
but realistic entropy effects.
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CONCLUSIONS

OBSERVATION / ANALYSIS NUMERICAL MODELS

o Neutron stars are now e Rotation, magnetic field easy
well-observed objects. to take into account.

@ Observations acquire much o Superfluid models can give
better accuracy (NICER, insight on glitch phenomena
SKA,...) (more observations?).

o Better understanding of e Elastic crust should be
the physics (e.g. EoS)? modeled, too (tough!).
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Not a simple perfect-fluid-one-parameter-EoS approach.
=Gravitational waves bring a lot of new information into the
game (tidal deformability). Modelling of binary neutron
stars. ..
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