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Why are we interested in hot and dense
matter ?

Astrophysical point of view :

Supernovae/hypernovae (stellar evolution,
explosion mechanism, formation of compact
objects,. . .)

Compact object mergers (gravitational
waves, γ-ray bursts, . . .)

Site for production of heavy elements and
chemical evolution of the universe

Crab nebula (Hubble telescope)

Microphysics point of view :

Study (strongly interacting) matter under extreme conditions of temperature,
density ans asymetry (p/n-ratio) not reachable in terrestrial experiments

Neutrino interactions (with matter and neutrino oscillations)
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What is “hot and dense” ?
We want to describe :

Core-collapse supernovae and subsequent neutron star/black hole formation
Binary neutron star mergers and neutron star black hole mergers
Neutron stars

→ Large domains in density, temperature and asymetry have to be covered

temperature 0 MeV ≤ T < 150 MeV
baryon number density 10−11 fm−3 < nB < 10 fm−3

electron fraction 0 < Ye < 0.6

and matter composition changes dramatically throughout ! [Review MO et al RMP 2017]

Different regimes :
Very low densities and temperatures :

I dilute gas of non-interacting nuclei → nuclear statistical equilibrium (NSE)

Intermediate densities and low temperatures :
I gas of interacting nuclei surrounded by free nucleons → beyond NSE

High densities and temperatures :
I nuclei dissolve

→ strongly interacting (homogeneous) hadronic matter
I potentially transition to the quark gluon plasma
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What do we need as input from microphysics ?

An equation of state (EoS)

(Weak) reaction rates

The EoS thermodynamically relates different quantities to close the system of
hydrodynamic equations. The number of parameters depends and equilibrium
conditions, e.g.

I For a cold neutron star in β-equilibrium :
F equations depend on baryon number density and pressure

→ EOS is P (nB) (or equivalent)
I For core collapse and binary mergers :

F equations depend on baryon number density, lepton number density (no
β-equilibrium), temperature, and pressure
→ EOS is P (nB , T, YL) (or equivalent)

Reaction rates enter if equilibrium is not reached, in particular
neutrino-matter interactions coupling hydrodynamic equations with neutrino
transport
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How to constrain the EoS ?
Mass-radius relation of a cold neutron star

M and R
I GR, stationa-

rity+spherical
symmetry

I Equation of state
(EoS)

→ solving TOV-system

Different EoS models (taken from http ://compose.obspm.fr)
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Maximum mass is a GR effect, value specific for each EoS

Determining mass and radius of one object considered as holy grail
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How to constrain the EoS ?
1. Neutron star masses

Observed masses in binary systems
(NS-NS, NS-WD, X-ray binaries) with
most precise measurements from double
neutron star systems.

Two precise mass measurements in
NS-WD binaries

I PSR J1614-2230 :
M = 1.908± 0.016M� [Arzoumanian et al 2018]

I PSR J0348+0432 :
M = 2.01± 0.04M� [Antoniadis et al 2013]

Given EoS ⇔ maximum mass

Additional particles add d.o.f.
→ softening of the EoS
→ lower maximum mass
→ constraint on core composition
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How to constrain the EoS ?
2. GW from binary NS mergers

GW170817 : first detection of a NS-NS merger with LIGO/Virgo detectors

Late inspiral → tidal deformability Λ̃ depends on matter properties

GW170817

70 < Λ̃ < 720 (90% confidence level)
(low spin prior) [Abbott et al 2018]

Λ̃(Mchirp , q,EoS)

∼ 5% uncertainty from crust
treatment

. 10% uncertainty from thermal
effects

Λ̃ for different EoS models, q is mass ratio
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What do we know about the EoS ?

NS masses and Λ̃ constraints
compatible with nuclear physics
results :

I Ab-initio neutron matter
calculations

I Nuclear masses, experiments for
nuclear matter parameters, . . .

Non-nucleonic degrees of freedom
(hyperons, mesons, quarks) might
exist in the central part

Different EoS models compatible with Mmax > 1.97M�
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Remark : Constraints essentially on homogeneous matter at relatively low
densities (except for NS masses) and vanishing temperature
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Some open problems
Equation of state

Clusterised matter :
I Theoretical description of inhomogeneous system (interplay of Coulomb and

strong interaction, surface effects, thermal effects . . .)
I Masses of (neutron rich) nuclei
I Transition to homogeneous matter (stellar matter is electrically neutral !)

Nuclear abundances within different models (same thermodynamic conditions during CCSN collapse phase)
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Homogeneous matter : interactions and particle content at high densities and
temperatures, is there a (first order) phase transition ?
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Some open problems
Reaction rates

Overall reaction rates : matter composition + individual rates
I Homogeneous matter : calculate individual rates in hot and dense medium

→ collective response
I Clusterised matter : rates on nuclei far from stability (up to now essentially

shell model)

Different (weak) interaction rates
are extremely important ! Neutrino
emission for (P)NS cooling, CCSN
neutrino signal, BNS merger
ejecta composition, . . .

Very sensitive to the different
ingredients

I Example : influence of nuclear
masses
→ up to 30% change in overall
EC rate

Nuclear masses and EC rates
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What can we expect from future work ?
Multi-messenger observations

EM observations of BNS mergers
I Abundances of produced elements sensitive

to Ye of ejecta (EoS, merger dynamics)
and nuclear masses far from stability

I Abundances determine energy released by
radioactive decays → impact on final
lightcurve (with Mej , vej )

Bolometric kilonova lightcurves
over 30 days

[Barnes et al 2016]

CCSN neutrino signal

[Fischer et al 2017]

Neutrino signal of a galactic CCSN
detectable

I Sensitive to neutrino-matter
interactions (couplings, particle
content, . . .)

I Sensitive to neutrino oscillations
I Sensitive to the underlying EoS

(phase transition . . .)
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What can we expect from future work ?
Gravitational waves

Information on EoS from different phases of
BNS mergers (or NS-BH mergers)

I Inspiral → masses of objects
I Late inspiral → tidal deformability,

additional Λ̃ values from LIGO/Virgo runs
I Post merger oscillations very sensitive to

matter EoS → peak frequency strongly
correlated with NS radius
[Bauswein et al, Sekiguchi et al, . . .]

I Post-merger phase accessible to future
detections ?
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[Bauswein et al 2018]

GW detections from core-collapse and early proto-neutron star phase ?

GW detections from neutron stars (oscillations) ?

Again high sensitivity to matter properties but theoretical work needed to relate
unambigously signal to matter properties
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What can we expect from future work ?
Electromagnetic NS observations

X-ray observations of NS radii from
different types of objects, but very model
dependent :

I Atmosphere modelling
I Interstellar absorption (X-ray

observations !)
I Distance, magnetic fields, rotation, . . .

Many discussions

Consensus : radius of a fiducial M = 1.4M� star
10-15 km

2σ error bars, radii at M = 1.4M�
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[courtesy M. Fortin, CAMK]

NICER (launched June 2017) should considerably improve the situation

Radiotelescope SKA : many new precisely determined masses, radius via
moment of inertia ?

Precise astrometry of X-ray binaries → new massive NSs ?
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Summary

We need to know matter properties (EoS and reaction rates) in regions not
accesible to experiments

1 Constraints on the EoS for the moment almost exclusively on cold matter,
much progress recently, two reliable ones from massive NSs and GW170817
tidal deformability → some models no longer viable

2 But EoS of cold matter alone is not sufficient, e.g.
1 Thermal effects and matter composition e.g. for neutrino-matter interactions

and elemental abundances ((P)NS cooling, CCSN explosion mechanism and
neutrino signal, heavy element nucleosynthesis, . . .)

2 Superfluidity in NSs, magnetic field effects (→ talk by J. Novak)

Many open questions and much work needed, for the theorists from nuclear physics
modellisation, simulations of compact objects to multi-messenger data analysis
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