Neutron stars:

macroscopic objects with quantum properties

Jérôme Pétri

Observatoire astronomique de Strasbourg, Université de Strasbourg, France.

Journées Théorie PINHE, Paris, octobre 2018

Pulsars & Magnetars overview

- 2 Neutron star magnetosphere models
- 3 GRFFQED magnetospheres
- 4 Conclusions & Perspectives

Toute ressemblance avec des étoiles réelles, existantes ou ayant existé ne saurait être que pure coïncidence.

a neutron star

compact object with compactness $\frac{R_s}{R} \approx 0.4$.

 \Rightarrow strong gravity effects.

a neutron star

compact object with compactness $\frac{R_{\rm s}}{R} \approx 0.4$. \Rightarrow strong gravity effects.

strongly magnetized

around the critical field $B_{\rm qed} = 4.4 \times 10^9$ T. \Rightarrow plasmas, QED effects. (pair creation e^{\pm} , vacuum polarisation, cyclotron lines).

a neutron star

compact object with compactness $\frac{R_s}{R} \approx 0.4$. \Rightarrow strong gravity effects.

strongly magnetized

around the critical field $B_{\rm qed} = 4.4 \times 10^9$ T. \Rightarrow plasmas, QED effects. (pair creation e^{\pm} , vacuum polarisation, cyclotron lines).

rotating

- \Rightarrow huge electric fields.
- \Rightarrow violent acceleration of particles.

$$E_{
m schw} \equiv c B_q \approx 1.3 imes 10^{18}
m V/m$$

Brief overview

What is a pulsar?

a neutron star

compact object with compactness $\frac{R_s}{R} \approx 0.4$. \Rightarrow strong gravity effects.

strongly magnetized

around the critical field $B_{\rm qed} = 4.4 \times 10^9$ T. \Rightarrow plasmas, QED effects.

(pair creation e^{\pm} , vacuum polarisation, cyclotron lines).

rotating

- \Rightarrow huge electric fields.
- \Rightarrow violent acceleration of particles.

$$E_{
m schw} \equiv c B_q \approx 1.3 \times 10^{18} \ {
m V/m}$$

Indisputable observations

- rotation period $P \in [1.5 ms, 10 s]$.
- derivative of period $\dot{P} \in [10^{-18}, 10^{-15}]$.
- slowdown by rotational braking constrained by

$$L_{\rm rot} = 4 \, \pi^2 \, I \, \dot{P} \, P^{-3} \approx 10^{24-31} \, W$$

 $I\approx 10^{38}~{\rm kg.m^2:}$ moment of inertia.

A doubtful interpretation

magnetic field estimated by magnetodipole losses

$$B \sin \chi = 3.2 \times 10^{15} \sqrt{P \dot{P}} T = 10^{5-8} T$$

- \Rightarrow only constrain $B_{\perp} = B \sin \chi$.
- \Rightarrow do not believe these estimates.
- \Rightarrow *B* around $B_{\rm qed} = 4.4 \times 10^9$ T.
- \Rightarrow electrodynamics requires QED.

Neutron star magnetosphere

Figure: The standard pulsar model.

Radiation mechanisms and sites

- thermal, synchrotron, inverse Compton, curvature.
- radio photons from polar caps.
- high-energy photons from slot/outer gaps because high magnetic opacity at small radii.

Electrodynamics

- magnetosphere filled with a quasi-neutral (pair?) plasma.
- pair creation in the polar caps.
- \Rightarrow source of particles for the wind and nebula.
- are protons/ions also present?
- wind radially expanding outside the light-cylinder.

Radio emission requires

- a intense magnetic field for the reaction: $B + \gamma \rightarrow e^{\pm}$.
- a pair cascade e^{\pm} for the reaction: $1 e^{\pm} \rightarrow N_1 \gamma \rightarrow N_1 N_2 e^{\pm}$

But

- a strong magnetic field $B > B_{qed}$ inhibits radio emission
- thus pair creation efficiency.
- may be due to photon splitting according to $B + \gamma \rightarrow \gamma_1 + \gamma_2$
- \Rightarrow radio emission disappears.
- $\Rightarrow\,$ the theory tells us that neutron stars at $B>B_{\rm qed}$ are no more radio pulsars.
- $\Rightarrow\,$ let us call them magnetars.

Figure: Pair cascade

Figure: Photon splitting.

High B-pulsars B (> B_{edq})

Radio emission detected from several pulsars

- \bullet PSR J1847-0130: 9.4×10^9 T (McLaughlin et al., 2003).
- \bullet PSR J1718-3718: 7.4×10^9 T (Kaspi & McLaughlin, 2005).
- \bullet PSR J1846-0258: 4.9×10^9 T (Gotthelf et al., 2000).

Figure: High-B pulsars. (Ng et al., 2011)

Figure: Low-B magnetars. (Rea et al., 2012)

Low B-magnetars $B (< B_{edq})$

Magnetars with pulsar properties and low field exist

- SGR 0418+5729: $6\times10^8~T$ (Rea et al., 2010)
- SGR 1822-1606: 2.7×10^9 T (Rea et al., 2012)
- 3XMM J1852+0033: $< 4.1 \times 10^9 \mbox{ T}$ (Rea et al., 2014)

- Is the value $B_{\rm qed} \approx 4.4 \times 10^9$ T really discriminating?
- Is the *B* field reliably determined?
- What is the influence of gravitation on *B*-field and QED processes?

Figure: Artist view of a magnetar.

Figure: Photon scattering.

An accurate and quantitative analysis of phenomena at the neutron star surface takes into account

- an important space time curvature.
- a magnetic field strength of the order or larger than $B_{\rm qed}$.
- a relativistic pair plasma e^{\pm} (classical/quantum?).
- high-energy radiation processes (curvature, synchrotron, inverse Compton).

Therefore it requires

- QED processes: pair creation, quantum radiation.
- general relativity: light bending, gravitational redshift.

A first approach starts with an effective theory for the electromagnetic field including

- quantum corrections
- gravitational corrections
- to Maxwell equations.

Assumptions

- 3+1 foliation of spacetime based on general relativity.
- Lagrangian description of the electromagnetic field.

The metric is divided in a 3D space Σ_t and a time coordinate

$$ds^{2} = \alpha^{2} c^{2} dt^{2} - \gamma_{ab} (dx^{a} + \beta^{a} c dt) (dx^{b} + \beta^{b} c dt)$$

with

- lapse function α .
- shift vector β .
- spatial metric γ_{ab} .

Figure: Space-time split in 3+1.

The QED Lagrangian

- I^i , A_i : 4-current and 4-potential.
- *F^{ik}*: electromagnetic tensor.
- $\mathcal{I}_1 = F_{ik} F^{ik}$, $\mathcal{I}_2 = F_{ik} * F^{ik}$ field invariants.

	Euler-Heisenberg	Born-Infeld
η_1	$\frac{\alpha_{\rm sf}}{180\pi} \frac{1}{2\mu_0B_{\rm opd}^2}$	$\frac{1}{32 \mu_0 b^2}$
η_2	$\frac{7}{4}\eta_1$	η_1

with $\alpha_{\rm sf}$ the fine structure constant and $b = 9.18 \times 10^{11}$ T.

The QED Lagrangian

- I^i , A_i : 4-current and 4-potential.
- *F^{ik}*: electromagnetic tensor.
- $\mathcal{I}_1 = F_{ik} F^{ik}$, $\mathcal{I}_2 = F_{ik} * F^{ik}$ field invariants.

	Euler-Heisenberg	Born-Infeld
η_1	$\frac{\alpha_{\rm sf}}{180\pi} \frac{1}{2\mu_0B_{\rm cod}^2}$	$\frac{1}{32 \mu_0 b^2}$
η_2	$\frac{7}{4} \eta_1$	η_1

with $\alpha_{\rm sf}$ the fine structure constant and $b = 9.18 \times 10^{11}$ T.

The QED Lagrangian

- I^i , A_i : 4-current and 4-potential.
- *F^{ik}*: electromagnetic tensor.
- $\mathcal{I}_1 = F_{ik} F^{ik}$, $\mathcal{I}_2 = F_{ik} * F^{ik}$ field invariants.

with $\alpha_{\rm sf}$ the fine structure constant and $b = 9.18 \times 10^{11}$ T.

• time evolution from the variational principle

$$rac{\partial \mathcal{L}_{ ext{QED}}}{\partial A_i} - rac{1}{\sqrt{-g}} \, \partial_k \sqrt{-g} \, rac{\partial \mathcal{L}_{ ext{QED}}}{\partial \partial_k A_i} = 0$$

• constitutive relations for GRQED ($\xi_1 = 1 - K \eta_1$ and $\xi_2 \propto \eta_2$)

QED relations

$\mathbf{F} = \xi_1 \, \mathbf{D} + \frac{\xi_2}{c} \, \mathbf{B}$ $\mathbf{G} = \xi_1 \, \mathbf{H} - \frac{\xi_2}{c} \, \mathbf{E}$

 $abla imes {f G} = {f J} + rac{1}{\sqrt{\gamma}}\,\partial_t (\sqrt{\gamma}\,{f F})$

Homogeneous Maxwell equations

 $\nabla \cdot \mathbf{F} = \rho$

GR relations

$$\varepsilon_0 \mathbf{E} = \alpha \mathbf{D} + \varepsilon_0 c \beta \times \mathbf{B}$$
$$\mu_0 \mathbf{H} = \alpha \mathbf{B} - \frac{\beta \times \mathbf{D}}{\varepsilon_0 c}$$

Inhomogeneous Maxwell equations

 $\nabla \cdot \mathbf{B} = 0$

$$abla imes {\sf E} = -rac{1}{\sqrt{\gamma}}\,\partial_t(\sqrt{\gamma}\,{\sf B})$$

(Pétri, 2015a)

For a e^{\pm} pair plasma

- infinite conductivity $\sigma = +\infty$.
- zero temperature T = 0 thus zero pressure.
- negligible mass $m_e = 0$.

Force-free approximation

$$\mathbf{J} \cdot \mathbf{E} = \mathbf{0}$$
$$\rho \, \mathbf{E} + \mathbf{J} \times \mathbf{B} = \mathbf{0}$$

Electric current

$$\mathbf{J} = \rho \, \frac{\mathbf{E} \wedge \mathbf{B}}{B^2} + \frac{\mathbf{B} \cdot \nabla \times \mathbf{G} - \mathbf{F} \cdot \nabla \times \mathbf{E}}{B^2} \, \mathbf{B}.$$

Maxwell equations are complete, the charge density ρ adapting to the field configuration.

Figure: Spindown luminosity for different rotation rates, magnetic field strengths given by $log(B/B_q)$ and gravitational field (Newtonian or GR).

(Pétri, 2016) QED has no impact on spindown luminosity. Also true for FFQED.

- dynamics of neutron star magnetospheres
 ⇒ spindown luminosity, no effects.
- wave propagation quantum/relativistic plasmas
 ⇒ vacuum birefringence, signature from optical? (Mignani et al., 2017)
- X-ray polarisation prediction (Weisskopf et al., 2016).
 ⇒ an observable for the future IXPE mission.
- do photons follow curved field lines (magnetic lensing)? (Shabad & Usov, 1984), (Shaviv et al., 1999)
- do we need QMHD and chiral MHD? (Haas, 2005), (Boyarsky et al., 2015)
- as a long term task, possibility to test QED in strong magnetic AND gravitational fields.

Figure: The IXPE satellite.

THANKS

FOR

YOUR ATTENTION

References I

- Boyarsky A., Fröhlich J., Ruchayskiy O., 2015, Physical Review D, 92, 043004
- Espinoza C. M., Lyne A. G., Kramer M., Manchester R. N., Kaspi V. M., 2011, ApJL, 741, L13
- Gotthelf E. V., Vasisht G., Boylan-Kolchin M., Torii K., 2000, The Astrophysical Journal Letters, 542, L37
- Haas F., 2005, Physics of Plasmas, 12, 062117
- Hewish A., Bell S. J., Pilkington J. D., Scott P. F., Collins R. A., 1968, \nat, 217, 709
- Kaspi V. M., Manchester R. N., Siegman B., Johnston S., Lyne A. G., 1994, ApJL, 422, L83
- Kaspi V. M., McLaughlin M. A., 2005, The Astrophysical Journal Letters, 618, L41
- Livingstone M. A., Kaspi V. M., Gavriil F. P., 2005, ApJ, 633, 1095
- Livingstone M. A., Kaspi V. M., Gotthelf E. V., Kuiper L., 2006, ApJ, 647, 1286
- Livingstone M. A., Ng C.-Y., Kaspi V. M., Gavriil F. P., Gotthelf E. V., 2011, ApJ, 730, 66
- Lorimer D. R., Kramer M., 2004, Handbook of Pulsar Astronomy
- Lyne A. G., Pritchard R. S., Graham-Smith F., 1993, MNRAS, 265, 1003
- Lyne A. G., Pritchard R. S., Graham-Smith F., Camilo F., 1996, Nat, 381, 497
- McLaughlin M. A. et al., 2003, \apjl, 591, L135
- Mignani R. P., Testa V., González Caniulef D., Taverna R., Turolla R., Zane S., Wu K., 2017, Monthly Notices of the Royal Astronomical Society, 465, 492
- Ng C.-Y., Kaspi V. M., Göğüş E., Belloni T., Ertan Ü., 2011, AIP Conference Proceedings, 1379, 60

- Pétri J., 2015a, Monthly Notices of the Royal Astronomical Society, 451, 3581
- Pétri J., 2015b, Monthly Notices of the Royal Astronomical Society, 450, 714
- Pétri J., 2016, Astronomy and Astrophysics, 594, A112
- Rea N. et al., 2010, Science, 330, 944
- Rea N. et al., 2012, The Astrophysical Journal, 754, 27
- Rea N., Viganò D., Israel G. L., Pons J. A., Torres D. F., 2014, The Astrophysical Journal Letters, 781, L17
- Roy J., Gupta Y., Lewandowski W., 2012, MNRAS, 424, 2213
- Shabad A. E., Usov V. V., 1984, \apss, 102, 327
- Shaviv N. J., Heyl J. S., Lithwick Y., 1999, Monthly Notices of the Royal Astronomical Society, 306, 333
- Weisskopf M. C. et al., 2016, Results in Physics, 6, 1179
- Weltevrede P., Johnston S., Espinoza C. M., 2011, MNRAS, 411, 1917

- Why to study them?
- Link to nebula
- Orders of magnitude

Many progresses in (astro)physics

• confirmation of the existence of neutron stars.

Figure: Simplified structure of a neutron star.

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.

Figure: Interior of a neutron star.

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.
- indirect detection of gravitational waves.

Figure: Double neutron star system.

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.
- indirect detection of gravitational waves.
- detection of the first planetary system.

Figure: Planets around pulsars.

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.
- indirect detection of gravitational waves.
- detection of the first planetary system.
- study of quantum processes in a strong magnetic field.

Figure: Magnetic reconnection in a magnetar.

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.
- indirect detection of gravitational waves.
- detection of the first planetary system.
- study of quantum processes in a strong magnetic field.
- motion of matter and photons in strong gravitational fields.

Figure: General-relativistic effects (Shapiro delay).

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.
- indirect detection of gravitational waves.
- detection of the first planetary system.
- study of quantum processes in a strong magnetic field.
- motion of matter and photons in strong gravitational fields.
- survey of the interstellar medium in the Milky Way.

Figure: Map of the electronic density in the Milky Way.

Many progresses in (astro)physics

- confirmation of the existence of neutron stars.
- indices on their internal structure.
- indirect detection of gravitational waves.
- detection of the first planetary system.
- study of quantum processes in a strong magnetic field.
- motion of matter and photons in strong gravitational fields.
- survey of the interstellar medium in the Milky Way.
- survey of the galactic magnetic field in the Milky Way.

Figure: Map of the magnetic field in the Milky Way.

Why study neutron stars?

 \Rightarrow Important to better understand neutron star physics and especially pulsars.

Figure: Larousse (french dictionary) view of a pulsar.

Figure: Interior view of a neutron star.

But from thermal X-ray blackbody radiation from surface, inferred magnetic field strength is 100 times stronger and polar cap area 100 smaller than expections from a dipole.

 \Rightarrow needs for multipolar components.

For any magnetic multipole of order $\ell,$ useful observables are

• the spindown luminosity (different from magnetodipole losses)

$$L \propto B^2 \,\Omega^{2\,\ell+2} \,R^{2\,\ell+4} \tag{6}$$

• the braking index n (a measure of the efficiency of braking) such that

$$\dot{\Omega} = -K \,\Omega^{n} \tag{7}$$

For a multipole of order ℓ it becomes approximately $n = 2\ell + 1$.

- for a dipole n = 3.
- for a quadrupole n = 5 (the same for gravitational radiation).

Magnetic field strength estimates

- luminosity L, stellar radius R and period P (or Ω) being known, we cant get an estimate of the magnetic field strength at the surface.
- usually done for a pure dipole.
- but if multipoles are present, the estimate becomes inaccurate or even wrong.

Magneto-dipole losses useless to get drastic upper limits for multipole components. $L_{\rm dip} \gg L_{\rm quad} \Leftrightarrow B_{\rm dip} \gg B_{\rm quad}$ (Pétri, 2015b)

7/13

Pulsar	Distance	Period P	Ė	Braking de	References
	(kpc)	(s)	(10^{-15})	index <i>n</i>	
B0531+21	2.0	0.033	421	2.509 ± 0.001	Lyne et al. (1993)
J0537-6910	51	0.0161	0.0518	-1.5 ± 0.1	?
B0540-693	51.5	0.050	479	2.140 ± 0.009	Livingstone et al. (2005)
B0833-45	0.29	0.089	124	1.40 ± 0.20	Lyne et al. (1996)
B1509-58	5.81	0.150	1490	2.837 ± 0.001	Kaspi et al. (1994)
J1846-0258	5.10	0.325	7083	2.65 ± 0.01	Livingstone et al. (2006)
				2.16 ± 0.13	Livingstone et al. (2011)
J1119-6127	8.40	0.408	4021	2.91 ± 0.05	Weltevrede et al. (2011)
J1734-3333		1.170	2280	0.9 ± 0.2	Espinoza et al. (2011)
J1833-1034				1.857	Roy et al. (2012)
J1640-4631	12	0.206	975.8	3.15	?

Table: Observational properties of some typical pulsars.

 $rac{R}{r_{
m L}} = rac{\Omega R}{c} \propto \Omega \propto 1/P$ (8)

Figure: Braking index of rotating magnetic multipoles.(Pétri, 2015b)

- $1 < n < 3 \Rightarrow$ topology between monopolar wind and dipolar radiation.
- $3 < n < 5 \Rightarrow$ topology between dipolar and quadrupolar radiation.

- Why to study them?
- Link to nebula
- Orders of magnitude

• the pulsar and its magnetosphere, source of *relativistic* e^{\pm} *pairs* $r_{\rm L} = 10^6$ m.

- the pulsar and its magnetosphere, source of *relativistic* e^{\pm} *pairs* $r_{\rm L} = 10^6$ m.
- the cold ultra-relativistic wind streaming to the nebula.

- the pulsar and its magnetosphere, source of *relativistic* e^{\pm} *pairs* $r_{\rm L} = 10^6$ m.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the *MHD* shock, $r_{\rm ts} = 3 \times 10^{15}$ m= 0.1 pc \Rightarrow main source of radiation observed in radio, optics, X-rays and gamma-rays.

choc terminal (MHD)

- the pulsar and its magnetosphere, source of *relativistic* e^{\pm} *pairs* $r_{\rm L} = 10^6$ m.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the *MHD* shock, $r_{\rm ts} = 3 \times 10^{15}$ m= 0.1 pc \Rightarrow main source of radiation observed in radio, optics, X-rays and gamma-rays.
- the supernova remnant.

choc terminal (MHD)

- the pulsar and its magnetosphere, source of *relativistic* e^{\pm} *pairs* $r_{\rm L} = 10^6$ m.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the *MHD* shock, $r_{\rm ts} = 3 \times 10^{15}$ m= 0.1 pc \Rightarrow main source of radiation observed in radio, optics, X-rays and gamma-rays.
- the supernova remnant.
- the interstellar medium.

choc terminal (MHD)

Supernova remnant and nebula

- the pulsar and its magnetosphere, source of *relativistic* e^{\pm} *pairs* $r_{\rm L} = 10^6$ m.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the MHD shock, r_{ts} = 3 × 10¹⁵ m= 0.1 pc
 ⇒ main source of radiation observed in radio, optics, X-rays and gamma-rays.
- the supernova remnant.
- the interstellar medium.

Figure: The Crab nebula.

- Why to study them?
- Link to nebula
- Orders of magnitude

Electromagnetic field

• electric field induced at the stellar crust

$$E = \Omega B R = 10^{13} \text{ V/m}$$

- \Rightarrow instantaneous acceleration at ultra-relativistic speeds ($au_{
 m acc} < 10^{-20}$ s).
- \Rightarrow Lorentz factor $\gamma \gg 1$.

Gravitational field

• negligible gravitational force ! For proton with mass *m_p*

$$\frac{F_{\rm grav}}{F_{\rm em}} \approx \frac{G M m_p/R^2}{e \,\Omega B R} \approx 10^{-12} \ll 1 \tag{9}$$

and a factor $m_p/m_e \approx 2,000$ less for electrons.

Neutron star characteristics

- masse $M \approx 1.4 M_{\odot}$.
- radius $R \approx 10$ km.
- centrale density $\rho_{\rm c} \approx 10^{17}~{\rm kg/m^3}.$

Orders of magnitude

 \Rightarrow dynamic of the magnetosphere dominated by the electromagnetic field. \Rightarrow gravitational field negligible to first approximation!

Figure: Pulsar in a gravitational field.

Figure: View of a neutron star magnetosphere.