

Modelling the hysteresis cycles of Black-Hole X-ray binaries G. Marcel

collaborators: **J. Ferreira, P-O Petrucci, M. Clavel, G. Henri**, R. Belmont, J. Malzac, S. Corbel, J. Rodriguez, M. Coriat

A spectral...

1

A spectral...

A spectral... and a dynamical Hysteresis! —> Coincidence?

in the jet (Drappeau et al. 2017)

Conventional framework

Esin et al. 1996 Done et al. 2007

Conventional framework

Esin et al. 1996 Done et al. 2007 Major unanswered questions:

(1) Reproducing hard states at high luminosities $L > 0.1 L_{Edd}$? (Yuan & Narayan 2014 ARAA)

(2) Cycle?

- (3) Spectral state transitions?
- (4) Dynamical state transitions? Jet lines?
- (5) Why should those 2 transitions be related?

Our paradigm: the JED-SAD framework

Ferreira et al. 2006 Petrucci et al. 2008

Jet Emitting Disk:

Ferreira 1997

- Accretion due to magnetic torque,
- $P_{jets} = b P_{acc}$
- $v_r \ge c_s \longrightarrow$ Supersonic accretion flow

$$P_{jets} = b \; \frac{GM\dot{M}}{2r_{in}} \; \left(1 - \frac{r_{in}}{r_J}\right)$$

Our paradigm: the JED-SAD framework

Ferreira et al. 2006 Petrucci et al. 2008

Jet Emitting Disk:

Ferreira 1997

- Accretion due to magnetic torque,
- $P_{jets} = b P_{acc}$,
- $v_r \ge c_s \longrightarrow$ Supersonic accretion flow

Standard Accretion Disk:

Shakura & Sunyaev 1973

- Accretion due to turbulent torque,
- $P_{jets} = 0$,
- $v_r \ll c_s \longrightarrow$ Subsonic accretion flow

Our paradigm: the JED-SAD framework

Ferreira et al. 2006 Petrucci et al. 2008

Jet Emitting Disk:

Ferreira 1997

- Accretion due to magnetic torque,
- $P_{jets} = b P_{acc}$,
- $v_r \ge c_s \longrightarrow$ Supersonic accretion flow

Standard Accretion Disk:

Shakura & Sunyaev 1973

- Accretion due to turbulent torque,
- $P_{jets} = 0$,
- $v_r \ll c_s \longrightarrow$ Subsonic accretion flow

\Rightarrow 2 control parameters: \dot{m} and r_J

The 2T disk thermal structure

ions: $1/2 q_{acc} = q^{i}_{adv} + q_{ie}$ electrons: $1/2 q_{acc} = q_{rad} + q^{e}_{adv} - q_{ie}$

The 2T disk thermal structure

ions: $1/2 q_{acc} = q^{i}_{adv} + q_{ie}$ electrons: $1/2 q_{acc} = q_{rad} + q^{e}_{adv} - q_{ie}$

Part of accretion power not lost in the jets

Radiative cooling as a bridge formula (Hubeny 1991) between:

- Thick: Blackbody radiation,
- Thin: Synchrotron, Bremsstrahlung and Compton processes as well as inverse-Compton illumination from SAD photons on the JED, using BELM code (Belmont et al. 2008).

Radiative cooling as a bridge formula (Hubeny 1991) between:

- Thick: Blackbody radiation,
- Thin: Synchrotron, Bremsstrahlung and Compton processes as well as inverse-Compton illumination from SAD photons on the JED, using BELM code (Belmont et al. 2008).

The 2T disk thermal structure

ions: $1/2 q_{acc} = q^{i}_{adv} + q_{ie}$ electrons: $1/2 q_{acc} = q_{rad} + q^{e}_{adv} - q_{ie}$

At low luminosity... $L = 10^{-3} L_{Edd}$

At low luminosity... $L = 10^{-3} L_{Edd}$

Possibility to reproduce Hard states!

Marcel et al. 2018a

At high luminosity... $L > 10^{-1} L_{Edd}$

At high luminosity... $L > 10^{-1} L_{Edd}$

The sum of **slim JED** disk spectra reproduces a high luminosity hard state spectrum!

Marcel et al. 2018a

From theory to obs: cycle in DFLD

From theory to obs: cycle in DFLD

From theory to obs: cycle in DFLD

 $L_R \propto \dot{m}^{**}$

Heinz & Sunyaev 2003

 $L_R \propto \dot{m}^{17/12} \times r_J (r_J - r_{in})^{5/6}$

<u>Results of the parametric $\dot{\mathbf{m}}(\mathbf{t})$ and $\mathbf{r}_{\mathbf{J}}(\mathbf{t})$ model:</u>

- (1) Reproducing hard states at high luminosities $L > 0.1 L_{Edd}$?
- (2) Cycle?
- (3) Spectral state transitions?
- (4) Dynamical state transitions? Jet lines?
- (5) Why should those 2 transitions be related?

Results of the parametric $\dot{\mathbf{m}}(\mathbf{t})$ and $\mathbf{r}_{\mathbf{J}}(\mathbf{t})$ model:

(1) Reproducing hard states at high luminosities $L > 0.1 L_{Edd}$? (2) Cycle?

- (3) Spectral state transitions?
- (4) Dynamical state transitions? Jet lines?
- \checkmark (5) Why should those 2 transitions be related?

