Voyager probing Dark Matter

Mathieu Boudaud

Laboratoire de Physique Théorique et Hautes Energies Paris, France

Journée Théorie PNHE

01-10-2018

Based on:

MB, E. F. Bueno, S. Caroff, Y. Genolini, V. Poulin, V. Poireau, A. Putze, S. Rosier, P. Salati and M. Vecchi (Astron.Astrophys. 605 (2017) A17)

MB, J. Lavalle and P. Salati (PhysRevLett.119.021103)

MB and M. Cirelli (arXiv:1807.03075)

MB, T. Lacroix, J. Lavalle and M. Stref (to appear)

Dark matter indirect detection

(see talks by F. Calore, M. Stref)

Measure an excess of cosmic rays with respect to the astrophysical background

Dark matter indirect detection

(see talks by F. Calore, M. Stref)

Measure an excess of cosmic rays with respect to the astrophysical background

The two-zone diffusion model

Galactic disc - $h \sim 100 \text{ pc}$ stars, gas and dust distributed in the arms

Magnetic halo - $1 \lesssim L \lesssim 20 \; \rm kpc$ diffusion zone of the model

- Space diffusion on the turbulent magnetic field
- Convection (Galactic wind) from supernovae explosions in the disc
- Destruction
 - Interaction with the interstellar medium (ISM)
 - Decay
- Energy losses
 - Interaction with the ISM (Coulomb, ionisation, bremsstrahlung, adiabatic expansion) $b(E, \vec{x})$
 - Synchrotron emission, inverse Compton scattering (electrons)
- Diffusive reacceleration from stochastic acceleration (Fermi II)

Propagation parameters determined using data of secondary to primary ratios (e.g. B/C)

(see talk by D. Maurin)

 $D(E) = \frac{2}{9} V_{A}^{2} \frac{E^{2} \beta^{4}}{K(E)}$

 $\vec{V}_C = V_C \operatorname{sign}(z) \vec{e}_z$

 $Q^{sink}(E, \vec{x})$

Transport of cosmic rays e[±]

No analytical solution for this equation

Numerical algorithm (GALPROP, DRAGON, PICARD, etc.) ⇒ prohibitive CPU time

Transport of cosmic rays e[±]

No analytical solution for this equation

Numerical algorithm (GALPROP, DRAGON, PICARD, etc.) ⇒ prohibitive CPU time

High energy approximation

 $-K(E)\,\Delta\psi + \partial_E \left[b_{\text{halo}}(E)\psi\right] = Q(E,\vec{x}) \quad E > 10 \text{ GeV}$

Transport of cosmic rays e[±]

$$\partial_{z} [V_{C} \operatorname{sign}(z) \psi] - K(E) \,\Delta \,\psi + 2h \,\delta(z) \,\partial_{E} \left\{ \left[b_{\operatorname{disc}}(E) + \frac{b_{\operatorname{halo}}^{eff}(E)}{\operatorname{halo}} \right] \,\psi - D(E) \,\partial_{E} \,\psi \right\} = Q(E, \vec{x})$$

Semi-analytical computation of e- and e+ fluxes, including all propagation effects

 \Rightarrow extend the semi-analytic computation of e^{\pm} interstellar fluxes down to MeV energies!

Mathieu Bo	oudaud
------------	--------

MeV cosmic rays?

Sub-GeV interstellar CRs cannot reach detectors orbiting the Earth

they are stopped by the heliopause (solar wind)

Voyager-1 crossed the heliopause in 2012

launch: 1977

distance now: ~140 au

direction: Hercules (solar apex)

velocity/Sun: ~17 km/s

CRs energy: $10 \lesssim T_n \lesssim 100 \text{ MeV/n}$

Voyager-1 crossed the heliopause in August 2012 \Rightarrow probes now the local interstellar medium

- First data of interstellar CRs
 ⇒ independent of solar effects (modulation)
- First sub-GeV interstellar CRs

Voyager-1 crossed the heliopause in 2012

launch: 1977

distance now: ~140 au

direction: Hercules (solar apex)

velocity/Sun: ~17 km/s

CRs energy: $10 \leq T_n \leq 100 \text{ MeV/n}$

Voyager-1 crossed the heliopause in August 2012 \Rightarrow probes now the local interstellar medium

- First data of interstellar CRs
 ⇒ independant of solar effects (modulation)
- First sub-GeV interstellar CRs
- Flux of $e^+ + e^-$ (no magnet) from ~3 to ~80 MeV

Voyager-1 crossed the heliopause in 2012

launch: 1977

distance now: ~140 au

direction: Hercules (solar apex)

velocity/Sun: ~17 km/s

CRs energy: $10 \leq T_n \leq 100 \text{ MeV/n}$

Voyager-1 crossed the heliopause in August 2012 \Rightarrow probes now the local interstellar medium

- First data of interstellar CRs
 ⇒ independant of solar effects (modulation)
- First sub-GeV interstellar CRs
- Flux of $e^+ + e^-$ (no magnet) from ~3 to ~80 MeV

Mathieu Boudaud

6

Application 1:

Contraints on MeV dark matter particles

MB, J. Lavalle and P. Salati (PhysRevLett.119.021103)

and

MB, T. Lacroix, M. Stref and J. Lavalle (to appear)

CRs e[±] from dark matter

Dark matter distribution in the MW

- NFW (spike in the GC)
- Cored (~ 8 kpc core)

McMillan(2016)

CRs propagation in the Galaxy

- **Propagation A**: MAX from *Maurin+(2001)* (HEAO3 B/C) Consistent with AMS-02 positrons and antiprotons $V_A = 117.6 \text{ km/s}$ (*strong reacceleration*)
- **Propagation B**: best fit on AMS-02 B/C from *Reinert & Winkler(2018)* $V_A = 0 \text{ km/s}$ (no reacceleration)

- **Propagation A:** strong reacceleration $V_A = 117.6 \,\mathrm{km/s}$ Maurin+(2001)
- **Propagation B:** no reacceleration $V_A = 0 \text{ km/s}$ Reinert & Winkler(2018)

electron channel

 $\chi \chi \longrightarrow e^+ e^-$

1) upper limit for $\langle \sigma v \rangle$ from Voyager-1 e^{\pm} : $\Phi_{e^++e^-}^{\text{DM}}(E_i) \leq \Phi_{e^++e^-}^{\text{exp}}(E_i) + 2\sigma_i$

1) upper limit for $\langle \sigma v \rangle$ from Voyager-1 e^{\pm} : $\Phi_{e^++e^-}^{\text{DM}}(E_i) \leq \Phi_{e^++e^-}^{\text{exp}}(E_i) + 2\sigma_i$

1) upper limit for $\langle \sigma v \rangle$ from Voyager-1 e^{\pm} : $\Phi_{e^++e^-}^{\text{DM}}(E_i) \le \Phi_{e^++e^-}^{\text{exp}}(E_i) + 2\sigma_i$

2) combined limit from Voyager1 e^{\pm} and AMS-02 e^{\pm} : **1)** + $\Phi_{e^{\pm}}^{\text{DM}}(E_i) \leq \Phi_{e^{\pm}}^{\exp}(E_i) + 2\sigma_i$

1) upper limit for $\langle \sigma v \rangle$ from Voyager-1 e^{\pm} : $\Phi_{e^++e^-}^{\text{DM}}(E_i) \le \Phi_{e^++e^-}^{\text{exp}}(E_i) + 2\sigma_i$

2) combined limit from Voyager1 e^{\pm} and AMS-02 e^{\pm} : **1)** + $\Phi_{e^{\pm}}^{\text{DM}}(E_i) \leq \Phi_{e^{\pm}}^{\exp}(E_i) + 2\sigma_i$

1) upper limit for $\langle \sigma v \rangle$ from Voyager-1 e^{\pm} : $\Phi_{e^++e^-}^{\text{DM}}(E_i) \leq \Phi_{e^++e^-}^{\text{exp}}(E_i) + 2\sigma_i$

2) combined limit from Voyager1 e^{\pm} and AMS-02 e^{\pm} : **1)** + $\Phi_{e^{\pm}}^{\text{DM}}(E_i) \leq \Phi_{e^{\pm}}^{\exp}(E_i) + 2\sigma_i$

3) with background of secondary e^+ : 1) + $\Phi_{e^+}^{\text{DM}}(E_i) + \Phi_{e^+}^{\text{II}}(E_i) \le \Phi_{e^+}^{\exp}(E_i) + 2\sigma_i$

X-rays and γ-rays *Essig+(2013)*

- More stringent (~1 order of magnitude)
- Less sensitive to the DM halo shape

Cosmic Microwave Background Liu+(2016)

• Less stringent

only for s-wave annihilation

Velocity average annihilation cross-section

 $\sigma_{0},\,\sigma_{1},\,...$ rely on the DM model

Velocity average annihilation cross-section

Assuming $\langle \sigma v \rangle$ constant (velocity independent) is a strong assumption for the DM model \Rightarrow better to constrain the σ_i coefficients, directly linked to the DM models

Velocity average annihilation cross-section

Assuming $\langle \sigma v \rangle$ constant (velocity independent) is a strong assumption for the DM model \Rightarrow better to constrain the σ_i coefficients, directly linked to the DM models

Recombination (CMB)

Now in the Milky Way

$$T_{\rm DM}(z_{\rm rec}) = \frac{T_{\gamma}^2(z_{\rm rec})}{T_{\rm kd}}$$
$$x \equiv \frac{T}{m_{\chi}}$$
$$\beta^2(z_{\rm rec}) = 10^{-9} \left(\frac{x_{\rm kd}}{1000}\right) \left(\frac{m_{\chi}}{1\,{\rm MeV}}\right)$$

Maxwellian distribution
$$\sigma$$

$$\sigma^2 \equiv \langle v^2 \rangle$$

$$v_c = \sqrt{2} \sigma$$
 $v_c \simeq 240 \text{ km s}^{-1}$

$$\beta_{\rm MW}^2 \simeq 10^{-6}$$

Contraints on **p-wave annihilations** (σ_1) should be **more stringent** for local CRs observations than for CMB

Velocity dependent annihilation (p-wave)

 $\langle \sigma v
angle(r)$ from Eddington inversion method

T. Lacroix, M. Stref and J. Lavalle (2018)

- more stringent (orders of magnitude) than other constraints Liu+(2016), Zhao+(2016)
- barely sensitive to the DM halo profile to the velocity anisotropy of the DM particles
- insensitive to the solar modulation below ~1 GeV and above ~20 GeV

Application 2:

Contraints on primordial black holes (PBHs) as dark matter

MB & M. Cirelli (arXiv:1807.03075)

Primordial black holes as dark matter

Produced from cosmological fluctuations during inflation

$$M \sim 10^{15} \left(\frac{t}{10^{-23} \, \mathrm{s}} \right) \mathrm{g}$$
 fraction of DM in PBHs: $f = \frac{\rho_{\mathrm{PBH}}}{\rho_{\mathrm{DM}}}$

Lensing, dynamical, accretion, cosmological and Hawking radiation limits

14

Primordial black holes as dark matter

Mathieu Boudaud

Produced from cosmological fluctuations during inflation

14

Hawking radiation of electrons and positrons

BH temperature from classical thermodynamics

$$S \propto \mathcal{A} = 4\pi R^2$$
$$dU = TdS \implies T = \frac{\hbar c^3}{2\pi G k_{\rm B} M}$$

BHs lose mass radiating particles with the rate:

Hawking temperature from QFT in curved spacetime

$$T = \frac{\hbar c^3}{8\pi G k_{\rm B} M}$$

$$\frac{dM}{dt} \simeq -5.25 \times 10^{25} f(M) \left(\frac{\mathrm{g}}{M}\right) \mathrm{g}\,\mathrm{s}^{-1}$$

PBHs with a mass $M < \sim 10^{15}$ g have been evaporated today

quasi-black body (grey) emission of e[±]

CRs e[±] from PBHs radiation

- Voyager-1 is sensitive local PBHs (~1kpc) because of e ± energy losses (ISM ionisation)
 ⇒ signal not sensitive to the DM halo profile
- strong reacceleration (**A**) enables to detect a signal above 1 GV \Rightarrow AMS-02 probes PBHs with $M < 10^{16}$ g

Voyager-1 data \Rightarrow upper limit for f = ρ_{PBH}/ρ_{DM}

Constraints on the fraction of DM in PBHs

 competitive with EGB limits (Fermi-LAT) up to 10¹⁶ g

Carr+(2012)

Constraints on the fraction of DM in PBHs

 competitive with EGB limits (Fermi-LAT) up to 10¹⁶ g
 Carr+(2012)

• red band: uncertainty on the magnetic halo size

4 < *L* < 20 kpc *Reinert & Winkler(2018)*

Constraints on the fraction of DM in PBHs

Conclusions and outlook

- The pinching method allows to compute semi-analytically the flux of e[±] below 10 GeV taking into account all propagation effects soon in USINE (code for the propagation of Galactic CRs) Maurin (2018)
- Voyager-1 and AMS-02 e[±] data are used to derive limits on MeV DM particles
 - s-wave annihilation (velocity independent)

More stringent (and less uncertainties) than X-rays and y-rays, less stringent than CMB,

• p-wave annihilation (velocity dependent)

Eddington inversion to compute properly the velocity average annihilation cross section

Much more stringent than all existing constraints

- Voyager-I (AMS-02) e[±] data are used to derive local limits on fraction of DM in PBHs
 - Competitive with EGB for $M < 10^{16}\,M_{\odot}$
 - Local constraints, no cosmological assumptions

Thank you for your attention!

Questions?

Voyager Golden Record: the Sounds of Earth

Back up

Pinching method

- The error averaging the pinching factor is smaller than 0.1%
- The more important low energy effects (convection, disc energy losses, DR), the less precise the pinching factor, but, the less precise it has to be!

Astrophysical background of secondary positrons

$$Q^{\Pi}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,H_c} n_j \int_{E_0}^{+\infty} dE_i \phi_i(E_i,\vec{x}) \frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile \\ j = target \end{cases}$$

$$p + p \to \begin{cases} p + \Delta^* \\ \Delta^* \to n + \pi^* \\ \pi^* \to \nu_{\mu} + \mu^* \\ \mu^* \to \bar{\nu}_{\mu} + \nu_e + e^* \end{cases}$$

$$X + \pi^* \\ \pi^* \to \nu_{\mu} + \mu^* \\ \mu^* \to \bar{\nu}_{\mu} + \nu_e + e^* \end{cases}$$

$$K^* \to \begin{cases} \nu_{\mu} + \mu^* \\ \pi^* \to \nu_{\mu} + \mu^* \\ \mu^* \to \bar{\nu}_{\mu} + \nu_e + e^* \end{cases}$$

$$K^* \to \begin{cases} \nu_{\mu} + \mu^* \\ \pi^* \to \nu_{\mu} + \mu^* \\ \pi^* \to \nu_{\mu} + \mu^* \\ \mu^* \to \bar{\nu}_{\mu} + \nu_e + e^* \end{cases}$$

$$K^* \to \left\{ n^0 + \pi^* \\ \pi^0 + \pi^* \\ \pi^* \to \nu_{\mu} + \mu^* \\ \mu^* \to \bar{\nu}_{\mu} + \nu_e + e^* \end{cases}$$

$$K^* \to \left\{ n^0 + \pi^* \\ \pi^0 + \pi^* \\ \pi^0 \to \mu^* + \nu_e + e^* \\ \mu^* \to \bar{\nu}_{\mu} + \nu_e + e^* \\ \pi^0 + \pi^* \\ \pi^0 \to \mu^* + \nu_e + e^* \end{cases}$$

Astrophysical background of secondary positrons

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

Positron excess above ~ 10 GeV!

Astrophysical secondary positrons

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

Astrophysical secondary positrons

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

The HE approximation \Rightarrow error up to 50% at 10 GeV!

Astrophysical secondary positrons

$$Q^{\mathrm{II}}(E,\vec{x}) = 4\pi \sum_{i=p,\alpha} \sum_{j=H,He} n_j \int_{E_0}^{+\infty} dE_i \,\phi_i(E_i,\vec{x}) \,\frac{d\sigma}{dE_i}(E_j \to E) \qquad \begin{cases} i = projectile\\ j = target \end{cases}$$

Lavalle+(2014)

Positrons can be used as an independent probe for the propagation parameters.

The degeneracy between K_0 and L can be lifted!

 $K_0 \,[\mathrm{kpc}^2/\mathrm{Myr}]$ V_C [km/s] *L* [kpc] V_a [km/s] Case δ MIN 0.85 0.0016 13.5 22.4 MED 0.70 0.0112 12 52.9 4 MAX 0.46 0.0765 15 5 117.6

Ruled out!

The AMS-02 positrons data favour the **MAX-type** sets of propagation parameters.

(result confirmed by AMS-02 antiprotons and recent B/C)

The Dark Matter scenario

Is it possible to obtain a satisfactory fit to the AMS-02 data?

The Dark Matter scenario

The spectrum of e+ from DM annihilations cannot account for the shape of the spectrum measured by AMS-02.

The positron flux produced by DM is restricted « around » the DM mass.

The poor quality of the fit disfavours a pure DM explanation for the positron excess!

The Dark Matter scenario

The spectrum of e+ from DM annihilations cannot account for the shape of the spectrum measured by AMS-02.

The positron flux produced by DM is restricted « around » the DM mass.

The poor quality of the fit disfavours a pure DM explanation for the positron excess!

This conclusion is based only on the positron data and does not require constraints from other channels (gamma rays, antiprotons, CMB, etc.)

Solar effect on cosmic rays (solar modulation)

CRs lose energy when enter the heliosphere (solar wind)

- spectra affected for energies ≤ 10 GeV
- time-dependent effect \implies « solar modulation »

Flat positron-to-proton ratio \Rightarrow same effect of the solar wind on p and e^+

(http://lpsc.in2p3.fr/crdb) 10^{3} 10^{2} $\mathbf{S}\mathbf{\Gamma}$ 10GeV/n m² PAMELA(2006/07-2006/07 PAMELA(2008/06-2008/07) Ξ_{10} PAMELA(2010/01-2010/01) 10 AMS02(2011/05-2013/11) 10^{-5} 10^{2} 10^{-1} 10^{3} 10 Ekn [GeV/n] 0.0018 **AMS-02** Schael (TeVPA 2016) 0.0016 2.0-2.3 GV 0.0014 0.0012 polarity reversal o the solar magneti 0.0010 field 3.6-4.0 GV 0.0008 0.0006 Jul-11 Jan-12 Jul-12 Dec-12 Jul-13 Dec-13 Jul-14 Dec-14 Jul-15 Jan-16

CRDB

MeV dark matter particles: motivations

8

Velocity dependent annihilation (p-wave)

$$\langle \sigma v \rangle(r) = K_0(r) \int d^3 \vec{v}_1 \int d^3 \vec{v}_2 \ f(|\vec{v}_1|, r) f(|\vec{v}_2|, r) \ \sigma \ v_{12}$$

$$f(\vec{v}, \vec{x}) \equiv \frac{d^6 N}{d^3 x \ d^3 v} = f(|\vec{v}|, r) \text{ : phase space distribution function}$$
$$K_0(r) = \int d^3 \vec{v}_1 \int d^3 \vec{v}_2 \ f(|\vec{v}_1|, r) f(|\vec{v}_2|, r) \text{ : normalisation factor}$$
$$v_{12} = |\vec{v}_2 - \vec{v}_2| \text{ : relative velocity}$$

(see talk by T. Lacroix)

Eddington inversion (spherical symmetry) Eddington (1916), Binney and Tremaine (1987)

Electrons ans positrons spectrum from PBHs radiation

Constraints on the fraction of DM in PBHs for a lognormal mass function

Inflation models predict a mass distribution for PBHs, often similar to a lognormal distribution

$$f(M) = \frac{1}{\sqrt{2\pi\sigma}M} \exp\left(-\frac{\log^2(M/M_c)}{2\sigma^2}\right)$$

