R&D Time-to-Digital Converter TDC

A. Annagrebah

Pôle MicRhAu

March 19, 2018

1 Introduction

- Time-Domain Signaling
- TDC Applications

2 TDC Application in pole MicRHAU

- Time Line of TDC application in MicRHAU pole
- HODOPIC
- TDC BRICK
- CRONOTIC
- CRONOTIC2

3 Conclusion

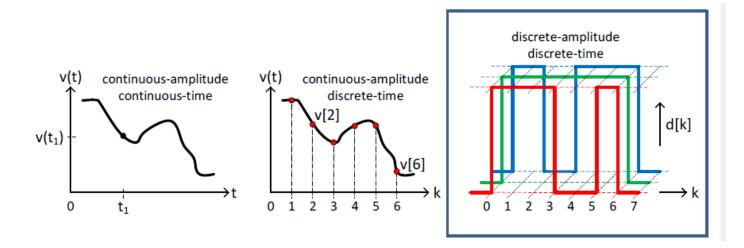
4 Bibliographie

2 / 25

1 Introduction

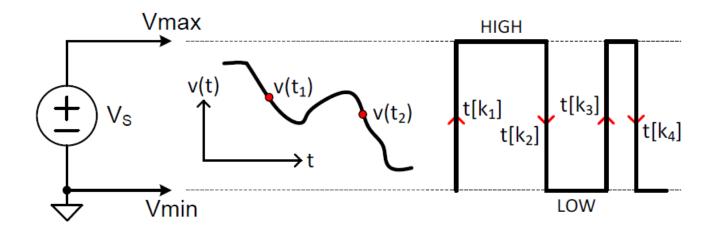
- Time-Domain Signaling
- TDC Applications

2 TDC Application in pole MicRHAU


- Time Line of TDC application in MicRHAU pole
- HODOPIC
- TDC BRICK
- CRONOTIC
- CRONOTIC2

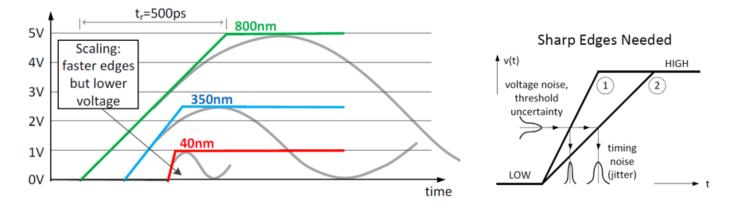
3 Conclusion

4 Bibliographie


3 / 25

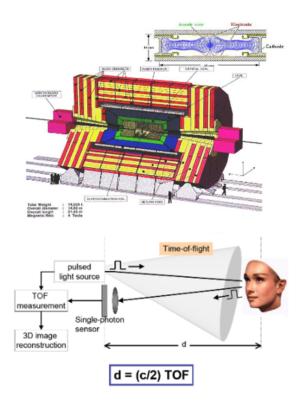
Information Carrier of an Electrical Signal

- The Electrical signal representations are well known and commonly used:
 - Continuous-amplitude and continuous-time (Analog signal)
 - Continuous-amplitude and discrete-time (Sampled analog signal)
 - Discrete-amplitude and discrete-time (Digial signal)
- Is this all? Can a signal be represented in other forms ?
- What about time ?


Time-Domain Signaling

- Instead of the amplitude, it is the time (i.e, timestamp) that carries the information $t[k_1]$
- R. Bogdan Staszewski (Professor, IEEE Fellow University College Dublin) : In deep-submicron CMOS process, a signal representation in time domaine will be more interesting than voltage domaine ([4] [3])

Technological Limitations



- In the past, the voltage resolution of v(t) was good (5V, 3.3V et 2.5V)
- But the circuit technology has been painfully slow (rise time $tr_{800nm} = 500ps, tr_{350nm} = 50ps$)
- Transition edge that carries the information needs to be sharp, otherwise the slow transition uncertaintly and timing jitter will worsen the timing signal.
- The new CMOS technologies are extremely fast $(tr_{130n} = [20\text{ps } 50\text{ps}] tr_{90nm} = [10\text{ps } 20\text{ps}]$ but a low supply voltage (at or below 1.5V).

TDC Applications

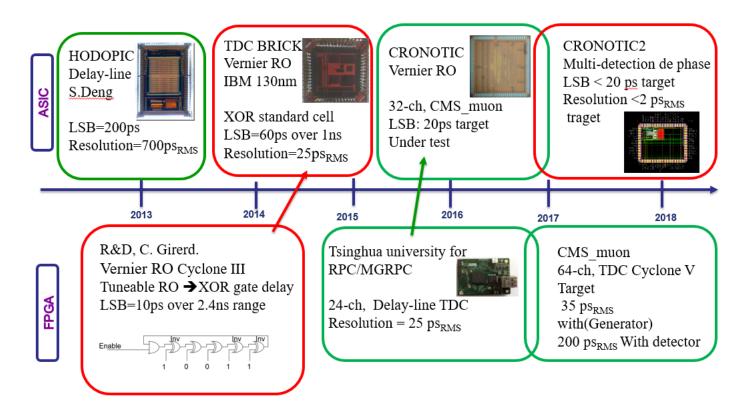
- TDC applications in CERN HEP:
 - Drift time in gas based tracking (CMS, ATLAS)
 - Time Of Flight (TOF) interaction (ALICE)
- Medical imaging (Hadron Therapy)
- 3D Imaging (TOF), LADAR (Laser RADAR)
- Domaine of phase and delay synthesis (full -digital PLL)

25

1 Introduction

- Time-Domain Signaling
- TDC Applications

2 TDC Application in pole MicRHAU

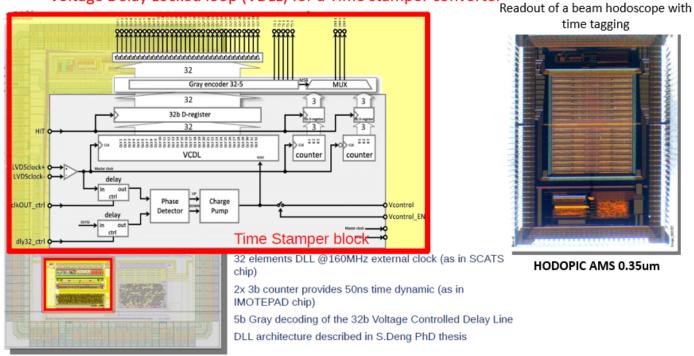

- Time Line of TDC application in MicRHAU pole
- HODOPIC
- TDC BRICK
- CRONOTIC
- CRONOTIC2

3 Conclusion

4 Bibliographie

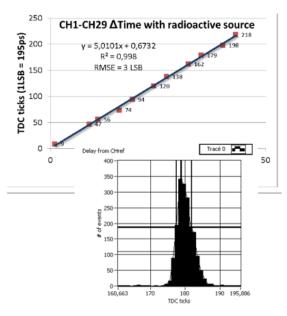
8 / 25

Time Line of TDC application in MicRHAU pole



March 19, 2018 9 / 25

HODOPIC Time stamper block



25

10 /

A. Annagrebah (IN2P3/MIND) Comité de Pilotage Pôle MICRHAU

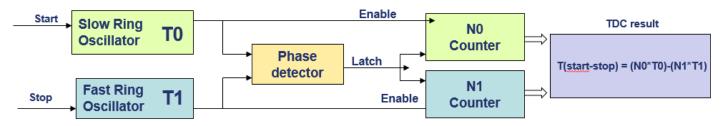
HODOPIC Time stamper block

HODOPIC tests and measurements:

- LSB =195ps
- Resolution (RMS) = 700ps = 3LSB

- Advantage of the DLL :
 - High integration level by using standard digital CMOS
 - Sensitivity to environmental conditions is factored out by the self-calibration mechanism.
- Disadvantage of the DLL :
 - The time resolution is limited to the unit cell delay (td= 50ps ams 350nm)
 - For higher resolution, faster technologies must be used
- Another possibility to overcome the resolution limit: Sub-gate technique [1] [2]

March 19, 2018



25

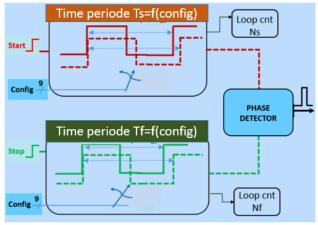
11

R&D in TDC: Vernier technique (C.Girerd)

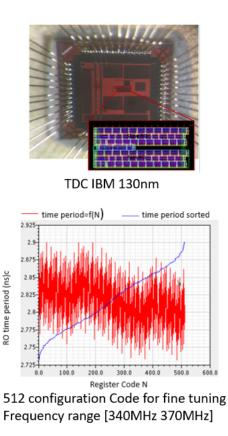
Beyond the limits of the technology: Vernier technique

The TDC time resolution is given by the frequency difference between oscillators : LSB= Ts-Tf

- In theory the resolution can be very small, as small as the frequency difference
- Simple architecture: Low Area, low consumption, can implemented in standard cells

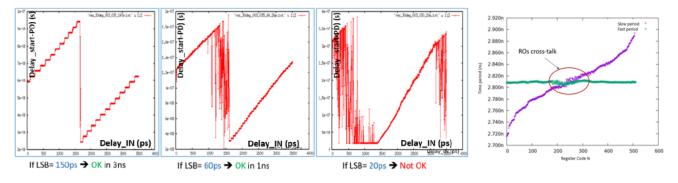

ASIC	[1] Youngmin Park Wentzloff	[2] Jianjun Yu
Process	65 nm	130 nm
LSB	1 ps	8 ps
DNL/INL	0.5/0.8	0.5/0.8

FPGA	[3] Sachin S. Junnarkar	C. Girerd
Process	ALTERA Stratix II	Cyclone III
LSB	11.8 ps (rms)	~ 10 ps
DNL/INL	0.5 / 1	-



TDC BRICK for R&D

Tow Ring oscillators in vernier configuration



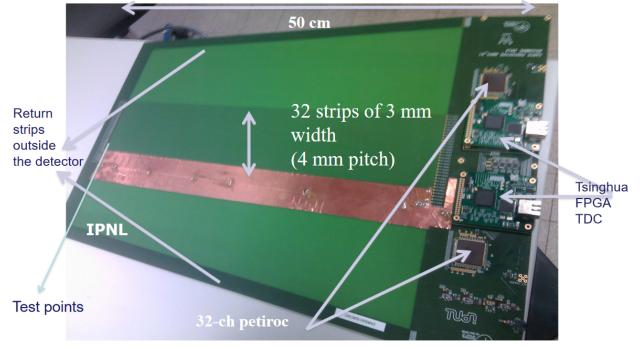
- The frequency of each RO is adjustable thanks to 9-bit register
- The resulting LSB often called $\Delta t = T_{slow} - T_{fast}$ could be theoretically adjusted down to 10fs

TDC BRICK for R&D

Measured (I/O) characteristic of the TDC for different LSB configuration

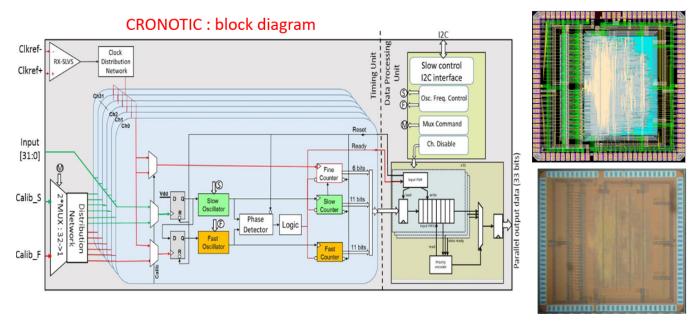
- Advantage
 - High integration level
 - Very good time resolution and dynamic range
 - Save silicon area and power

- Disadvantage
 - Accumulated timing errors
 - Coupling between the ROs
 - Calibration is done off-line



14

25


Electronics for Multigap CMS-GRPC detectors

A PCB was conceived to host : Pickup strips, 2 PETIROC, 2 TDC A DAQ system was developed. The PCB is intended to equip large chambers

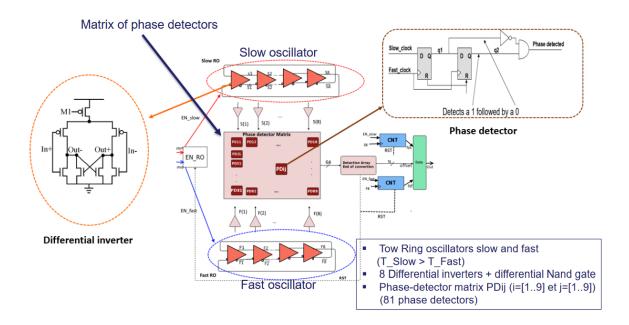
CRONOTIC

x32 TDC channels TSM 130nm

- Vernier Ring Oscillator with a single phase detector technique ۲
- Standard cells used to build the Ring Oscillators(R.O)
- Tsmc 130nm process is chosen according to the technology used in the ٢ front-end electronics (PETIROC from OMEGA group) MICRHA

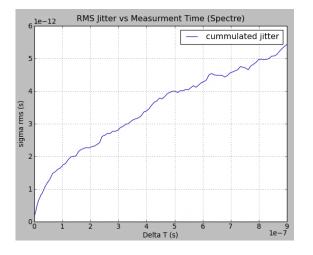
16 / 25

CRONOTIC : test board

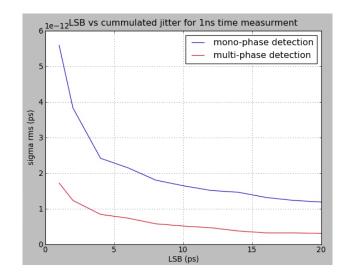

17 / 25

• Preliminary results of CRONOTIC:

- The configuration of the ASIC through the I2C link is working correctly
- The digital processing part of the ASIC works (up to a frequency of 90 MHz)
- Both the calibration and data acquisition modes of CRONOTIC work normally
- Significant offsets were found on the value of the slow and fast oscillator periods (during calibration)
- The slvs circuit operates at frequencies ranging from 100MHz to 900MHz
- Next steps:
 - Calibrate as precisely as possible the frequencies of the oscillators. This will allow to :
 - Study the cross talk between the 32 channels of CRONOTIC
 - Measure the resolution (Sigma) of CRONOTIC

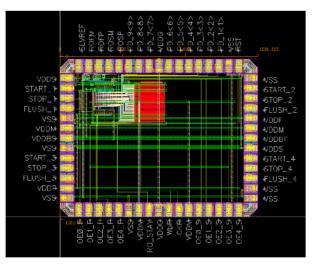


CRONOTIC2 R&D : Multi-phase detector TDC



- TDC LSB= T_{slow} T_{fast} (same as signe phase detector TDC)
- Full custom Inverter cells are designed (Sharp edge, 22fs noise jitter simulation)
- Advantage of the multi-phase technique : reducing dead time, cumulted jitter

CRONOTIC 2: Simulation results


- Cumulated jitter σ_j (due to noise or any other source) is the most undesired side effect of the Ring oscillator
- $\sigma_j = K\sqrt{\Delta t}$:
 - K=cst proportional to the inverter noise jitter (22fs)
 - ΔT is the measurment time

- Dead time $\Delta t = \frac{DR}{LSB}$
- For an LSB=20ps and Dynamic range DR= 1ns :

•
$$\sigma_{j_{simple}} = 3 \times \sigma_{j_{multi}}$$

CRONOTIC2 : Layout of the submitted circuit

TDC prototype in Tsmc 130nm technology

- Frequency range[1GHz 1.5GHz] std= 75MHz thank to 5bit selection
- LSB range [1p to 214ps] std=20fs (simulation results)

- Demonstrate an architecture suitable for high-resolution TDC
- Observe the Ring oscillator behavior to imperfections and noise
- Highlighted the advantage :
 - Deat time, Cummulated jitter
- Disadvantage:
 - Digital processing, Power Consumption($I_{avg} = 34mA$ for both ROs mainly dominate by the matrix buffers)

March 19, 2018

1 Introduction

- Time-Domain Signaling
- TDC Applications

2 TDC Application in pole MicRHAU

- Time Line of TDC application in MicRHAU pole
- HODOPIC
- TDC BRICK
- CRONOTIC
- CRONOTIC2

3 Conclusion

4 Bibliographie

22 / 25

Conclusion

- MicRhAu pole support strongly the TDC R&D activity in tsm130nm technology
 - Cronotic A Vernier RO TDC using single phase detector is under test:
 - Simplicity of digital processing unit, less power consumption, less area
 - cumulated jitter and dead time
 - Cronotic 2 A multi phase detector version of the TDC was designed and on fabrication:
 - less cumulated jitter and less dead time
 - complexity of the digital precessing unit, more power consumption, bigger area(power and area can be reduce with the matrix size)

- Improved version of Cronotic will be submitted affter the final testing (Cronotic, Cronotic2)
- Combine Petiroc frond-end (OMEGA) and Cronotic in one ASIC for the CMS-RPC time measurement
- Observe in real situation the advantage and drawback of a multi-phase technique and include improvement for a full and complete chip

1 Introduction

- Time-Domain Signaling
- TDC Applications

2 TDC Application in pole MicRHAU

- Time Line of TDC application in MicRHAU pole
- HODOPIC
- TDC BRICK
- CRONOTIC
- CRONOTIC2

3 Conclusion

4 Bibliographie

24 / 25

J. Christiansen M. Mota.

A high-resolution time interpolator based on a delay locked loop and an rc delay line.

IEEE Journal of Solid-State Circuits, 1999.

Dan I. Porat.

Review of sub-nanosecond time-interval measurements. *IEEE Transactions on Nuclear Science*, 1973.

- D. Leipold R.B Staszwski, K. Muhammad. All-digital tx frequency synthesizer and discrete-time receiver for bluetooth radio in 130-nm cmos. *IEEE RFIC Virtual JournalIEEE RFID Virtual Journal*, 2004.
 - P.Vallur R.B Staszwski, S.Vemulapalli.
 1.3 v 20 ps time-to-digital converter for frequency synthesis in 90-nm cmos.

IEEE Transactions on Circuits and Systems II, 2006.

25 / 25

