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Nuisances and Systematics
Likelihood typically includes
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to defne the model
→ Ideally, constrained by data like the POI

e.g. shape of H→μμ continuum bkg

What about systematics ?
= what we don’t know about the random processs
Þ Parameterize using additional NPs
→ By defnition, not constrained by the data

 ⇒ Cannot be free, or would spoil the measurement
(lumi free Þ no σ×B measurement!) 
Þ Introduce a constraint in the likelihood:

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

Phys. Rev. Lett. 119 (2017) 051802

POI Systematics 
NP

Measurement
Likelihood

NP Constraint term 
 penalty for θ ≠ θ⇒ nominal

e−αmμ μ

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Frequentist Constraints
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale variations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product



5

Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efciencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1... ndata

( k)

k=1. ..ncat , {θ j
obs
} j=1. .nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k ( θ⃗ ) N S , i , k ( θ⃗ ) + Bi ,k ( θ⃗ ) ] ∏
j=1

nsyst

G(θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories!
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Wilks’ Theorem
The likelihood usually has NPs:
• Systematics
• Parameters ftted in data

→ What values to use when defning the hypotheses ? → H(S=0, θ=?)

Answer: let the data choose  Þ use the best-ft values (Profling)

Þ Profle Likelihood Roatio (PLR)

tμ 0
=−2 log

L(μ=μ0,

^̂
θμ0

)

L(μ̂ , θ̂)
θ̂ overall best-ft value (unconditional MLE)

^̂
θμ0

best-ft value for μ=μ0  (conditional MLE)

Wilks’ Theorem: PLR also follows a χ2 ! 

→ Profling “builds in” the efect of the NPs
Þ Can treat the PLR as a function of the POI only

f ( tμ0
∣μ=μ0 ) = f

χ
2
(ndof=1) ( tμ0 )

also with NPs present
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Gaussian Profling
Counting exp. with background uncertainty: n =  S + θ :
→ Main measurement: n ~ G(S + θ, σstat)
→ Aux. measurement: θobs ~ G(θ, σsyst)

Then: 

PLRo: 

σ S = √ σ stat
2
+ σ syst

2

L (S ,θ) = G (n ;S + θ ,σ stat) G (θ
obs ;θ ,σ syst)

Ŝ= n− θ
obs

θ̂ = θ
obs

^̂
θ (S) = θ

obs
+

σ syst
2

σ stat
2
+σ syst

2
( Ŝ− S)

λ (S ,θ) = ( n− (S + θ)
σ stat )

2

+ ( θ
obs

− θ
σ syst )

2

= λ(S0,

^̂
θ (S0)) − λ ( Ŝ , θ̂ ) =

(S0− Ŝ)
2

σ stat
2

+ σ syst
2

Conditional MLE:

t S0
=−2 log

L (S=S0,

^̂
θS0

)

L( Ŝ , θ̂ )

MLEs:

For S = S, matches 
MLE as it should 

Stat uncertainty (on n) and syst (on θ) add in quadrature as expected

tS0
= ( S0− Ŝ

σ S )
2Roecall: Gaussian 

counting, no syst: 
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Efect of Profling
Systematics still afect the result even after profling their NPs!
e.g. again counting experiment: N(S,θ) = S + θ, measure n, constraint on θ~0.

1. No NP: N(S) = S
→ S ft: adjust S to N(S) = S = n
→ S=S0 ft: S=S0 fxed Þ N(S0) = S0, cannot adjust
Þ tension between N(S0)=S0 and n Þ large tS0 Þ strong exclusion of H(S0)

2. With NP: N(μ,θ) = S + θ
→ Ŝ ft: adjust N(S, θ̂) = N(S, θ̂=0) = n using S only (avoid penalty on θ)
→ S=S0 ft: S=S0 fxed, but θ̂(S0) can still pull N(S0,θ̂(S0)) towards n
Þ smaller tS0 Þ reduced exclusion of H(S0)

t S0
=−2 log

L (S=S0 ,
^̂
θS0

)

L( Ŝ , θ̂ )

N

n

N(S, θ̂=0)
N(S0)

N(S0, θ̂S0)
N(S)tS0, no systematics

tS0, with systematics

t S0
=−2 log

L (S0)

L( Ŝ)

More freedom
 Weaker exclusion ⇒
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Profling Example: ttH→bb
Analysis uses low-S/B categories to constrain backgrounds.
→ Roeduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. diferent 
kinematic regimes)

ATLA
S- C

O
N

F- 2016-08 0

Fit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
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Pull/Impact plots
Systematics are described by NPs 
included in the ft. Nominally:
• NP central value = 0 : corresponds to 

the pre-ft expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the value of the syst. : 

Fit results provide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero value 
Þ Need investigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-058

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
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Pull/Impact plots
Systematics are described by NPs 
included in the ft. Nominally:
• NP central value = 0 : corresponds to 

the pre-ft expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the value of the syst. : 

Fit results provide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero value 
Þ Need investigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
https://arxiv.org/abs/1612.07231
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Profling Takeaways
Systematic = NP with an external constraint (auxiliary measurement).
→ No special treatment, treated like any other NP: statistical and systematic 
uncertainties represented in the same way.

When testing a hypothesis, use the best-ft values
of the nuisance parameters: Profle Likelihood Ratio.

Wilks’ Theorem: the PLR has the same asymptotic properties as the LR without 
systematics: can profle out NPs and just deal with POIs. 

Profling systematics includes their efect into the total uncertainty. Gaussian:

Guaranteed to work only as long as everything is Gaussian, but typically
robust against non-Gaussian behavior.

L(μ=μ0,

^̂
θμ 0

)

L(μ̂ , θ̂)

σ total = √σ stat
2

+ σ syst
2

Profling can have unintended efects t need to carefully check behavior 
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Beyond Asymptotics: Toys
Asymptotics usually work well, but break down in 
some cases – e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, 
under the tested hypothesis
→ Also randomize the observable 
(θobs) of each auxiliary experiment:
→ Samples the true distribution of the PLR

 ⇒ Integrate above observed PLR to get the p-value
→ Precision limited by number of generated toys, 
Small p-values (5σ : p~10-7!) Þ large toy samples 

p(data|x)

PDF

Pseudo data

CMS-PAS-HIG-11-022

q0

Roepeat Ntoys times

G (θ
obs ;θ ,σ syst)

http://cds.cern.ch/record/1376643
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Toys: Example  arXiv:1708.00212

ATLAS X→Zγ Search: covers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low event counts Þ derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue) 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/
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Summary of Statistical Roesults Computation
Methods provide:

→ Optimal use of information from the data under general hypotheses

→ Arbitrarily complex/realistic models (up to computing constraints...)

→ No Gaussian assumptions in the measurements
Still often assume Gaussian behavior of PLR – but weaker assumption and 
can be lifted with toys
Systematics treated as auxiliary measurements – modeling can be tailored 
as needed

→ Single PLRo-based framework for all usual classes of measurements
Discovery testing
Upper limits on signal yields
Parameter estimation
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Look-Elsewhere Efect



18

Look-Elsewhere efect
Sometimes, unknown parameters in signal 
model 
e.g. p-values as a function of mX

Þ Efectively performing multiple, simultaneous 
searches
→ If e.g. small resolution and large 
scan range, many independent experiments

→ More likely to fnd an excess 
anywhere in the range, rather 
than in a predefned location

 ⇒ Look-elsewhere efect (LEE)

Testing the same H0, but against 
diferent alternatives

 diferent p-values⇒
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Global Signifcance
Probability for a fuctuation anywhere in the range → Global p-value.

 at a given location       → Local p-value

→ pglobal > plocal  Þ  Zglobal < Zlocal – global fuctuation more likely  less signifcant⇒

Trials factor : naively = # of independent intervals:
However this is usually wrong – more on this later

For searches over a parameter range, pglobal is the relevant p-value
→ Depends on the scanned parameter ranges
e.g. X→γγ : 200 < mX< 2000 GeV, 0 < ΓX < 10% mX.
→ However what comes out of the usual 
asymptotic formulas is plocal.

How to compute pglobal ? → Toys (brute force) or asymptotic formulas.

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width
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Global Signifcance from Toys

Principle: repeat the analysis in toy data:
→ generate pseudo-dataset
→ perform the search, scanning over parameters
     as in the data
→ report the largest signifcance found
→ repeat many times 

 ⇒ The frequency at which a given Z0 is found is the global p-value

e.g. X→γγ Search: Zlocal = 3.9σ (  p⇒ local ~ 5 10-5), 
scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX 

→ In toys, fnd such an excess 2% of the time 
 p⇒ global ~ 2 10-2, Zglobal = 2.1σ Less exciting...

 ⊕ Exact treatment
 CPU-intensive⊖  especially for large Z (need ~O(100)/pglobal toys)

Local 3.9σ
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Global Signifcance from Asymptotics
Principle: approximate the global p-value in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Indeed gives Ntrials=Nindep.

However this misses peaks sitting on 
edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2
N indep Zlocal

N indep =
scan range
peak width



22

Global Signifcance from Asymptotics
Principle: approximate the global p-value in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Indeed gives Ntrials=Nindep.

However this misses peaks sitting on 
edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2
N indep Zlocal

N indep =
scan range
peak width
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Illustrative Example
Test on a simple example: generate toys with
→ fat background (100 events/bin)
→ count events in a fxed-size sliding window, look for excesses
Two confgurations:
1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Predefned
Slices

Largest excess in predefned slices

Example toy

Largest excess anywhere
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Illustrative Example (2)
Very diferent results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum
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Illustrative Example (3)

Zlocal

pglobal(Zlocal)

Normalized 
Zlocal distribution

No LE
E

Search in predefned 
bins: Ntrials = 10

Search 
everywhere:

Searching everywhere gives the 
extra Zlocal dependence

N tr
ia

ls
≈

1
+ √

π
2
N in

de
p
Z lo

ca
l

Search in predefned bins

Search everywhere
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ZGlobal Asymptotics Extrapolation
Asymptotic trials factor (1 POI):

How to get Nindep ? Usually work with a slightly diferent formula:

 ⇒ calibrate for small Ztest, apply result to higher Zlocal.

Can choose arbitrarily small Ztest 
 ⇒ many excesses
 ⇒ can measure Nup in data (1 “toy”)

Can also measure <Nup> in multiple toys
if large stat uncertainty from
too few excesses

N trials = 1 + √
π
2
N indep Zlocal

Number of excesses with Z > Ztest 

N trials = 1 +
1
p local

⟨Nup(Ztest) ⟩ e
Zlocal

2
−Ztest

2

2

Ztest

Zlocal

Nup ~ 20
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In 2D O. Vitells and E. Gross, Astropart. Phys. 35 (2011) 230

Generalization to 2D scans: consider
sections at a fxed Ztest, compute its
Euler characteristic φ, and use

→ Generalizes 1D 
bump counting

Now need to determine
2 constants N1 and N2,
from Euler φ measurements
at 2 diferent Ztest values.

1 t 1 = 0

5

1 t 4
= -3

φ = 2

https://arxiv.org/abs/1105.4355
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Bayesian Methods
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Frequentist vs. Bayesian
All methods described so far are frequentist
• Probabilities (p-values) refer to outcomes 

if the experiment were repeated identically
many times

• Parameters value are fxed but unknown

• Probabilities apply to measurements:
→ “mH = 125.09 ± 0.24 GeV” :

→ i.e. [125.09 – 0.24 ; 125.09 + 0.24 ] GeV has p=68% to contain the true mH.
→ if we repeated the experiment many times, we would get diferent 
intervals, 68% of which would contain the true mH.

→ “5σ Higgs discovery”
• if there is really no Higgs, such fuctuations observed in 3.10-7 of experiments

Not exactly the crucial question – what we would really like to know is
What is the probability that the excess we see is a fuctuation
→ we want P(no Higgs |data) – but all we have is P(data | no Higgs)

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*tσ     μ*    μ*+σ
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Frequentist vs. Bayesian
Can use Bayes’ theorem to address this:

Can compute P(μ|data), if we provide P(μ)
→ Implicitly, we have now made μ into a random variable

– Is mH, or the presence of H(125), randomly chosen ?
– In fact, diferent defnition of p: degree of belief, not from frequencies.
– P(μ) Prior degree of belief – critical ingredient in the computation

Compared to frequentist PLR:
⊕ answers the “right” question
⊖ answer depends on the prior

P (μ∣data) =
P (data∣μ)

P (data)
P (μ)

“Bayesians address the questions 
everyone is interested in by using 
assumptions that no one believes. 
Frequentist use impeccable logic to 
deal with an issue that is of no 
interest to anyone.”  - Louis Lyons

same as in the frequentist 
formalism (=likelihood)

irrelevant normalization factor

Prior Probability
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Bayesian methods
Probability distribution (= likelihood) : same form as frequentist case, but
P(θ) constraints now priors for the systematics NPs, P(θ) 
                                    not auxiliary measurements P(θmes; θ)

 ⊕ Simply integrate them out, no need for profling:
→ Use probability distribution P(μ) directly for limits, credibility intervals
e.g. defne 68% CL (“Credibility Level”) interval [A, B] by: 

 ⊖ No simple way to test for discovery
⊖ Integration over NPs can be CPU-intensive

Priors : most analyses still using fat priors in the analysis variable(s)
Þ Parameterization-dependent: if fat in σ´B , then not fat in κ…
→ Can use the Jefreys’ or reference priors, but difcult in practice

Frequentist-Bayesian Hybrid methods (“Cousins-Highland”)
• Integrate out NPs as in Bayesian measurements
• Once only POIs left, Use P(data|μ) in a frequentist way

→ “Bayesian NPs, frequentist POIs”
• Some use in Run 1, now phased out in favor of frequentist PLR.

P (μ) =∫ P (μ ,θ) dθ

∫
A

B

P (μ ) dμ = 68 %
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Bayesian methods and CLs: CLs computation

L(n ;S ,θ) = G (n ;S+B+σ systθ ,σ stat) G(θobs=0 ;θ ,1)

Conditional MLE: ^̂θ(μ) =
σ syst

σ stat
2

+σ syst
2

(n− S−B)
PLRo : λ(μ) = (

S+B − n

√ σ stat
2

+σ syst
2 )

2

Gaussian  from previous studies, CL⇒ s limit is

CLs :    Sup
CLs = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2

+σ syst
2

MLE: Ŝ= n−B

Gaussian counting with systematic on background: n = S + B + σsystθ
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Bayesian methods and CLs: Bayesian case

P (n ∣ S ,θ) = G (n ;S+B+σ syst θ ,σ stat) G (θ ∣ 0, 1)

Gaussian counting with systematic on background: n = S + B + σsystθ

Bayesian: G(θ) is actually a prior on θ  perform integral (⇒ marginalization)

P (n ∣ S) = G (S ; n−B , √σ stat
2

+σ syst
2

)

∫
Sup

∞

P (S∣ n)dS = 5 % = [ 1−Φ (
Sup−(n−B)

√σ stat
2

+σ syst
2 ) ] [ Φ (

n−B

√σ stat
2

+σ syst
2 ) ]

−1

P (S ∣ n) = G (S ;n−B ,√σ stat
2

+σ syst
2

) [ Φ (
n−B

√σ stat
2

+σ syst
2 ) ]

−1

same result as CLs!

same efect as profling!

Need P(S|n)  a prior for S – take fat PDF over S > 0⇒

 Truncate Gaussian at S=0: ⇒ P (S ∣ n) = P (n ∣ S) P (S)

Bayesian Limit:

Sup
Bayes

= n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2

+σ syst
2 ) ) ] √σ stat

2
+σ syst

2
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Example: W’→lν Search
• POI: W’ σ´B → use flat prior over [0, +¥[.
• NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate over Gaussian priors

arXiv:1706.04786 

file:///home/nberger/Data/Applications/analysisDoc/PDF/1706.04786.pdf
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Why 5σ ?
One-sided discovery:  5σ  p⇔ 0 = 3 10-7   1 chance in 3.5M⇔

→ Overly conservative ?
→ Do we even know the sampling distributions so far out ?

Roeasons for sticking with 5σ (from Louis Lyons):
• LEE : searches typically cover multiple 

independent regions 
 Global p-value is the  relevant one⇒

Ntrials ~ 1000 : local 5σ   O(10⇔ -4) more reasonable
• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒
• History: 3σ and 4σ excesses do occur regularly,

for the reasons above
• “Subconscious Bayes Factor” : p-value should be

at least as small as the subjective p(S):

Extraordinary claims require extraodinary evidence
 ⇒ Stay with 5σ...

Local 3.9σ, p0 = 5E-5
Global 2.1σ, p0 = 2E-2

P( fluct) =
P ( fluct∣B)P (B)

P( fluct∣S)P(S) + P ( fluct∣B)P (B)

https://arxiv.org/abs/1409.1903
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Statistical Modeling: in Practice
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Bulding statistical models

So far focus has been on concepts, but building a statistical model also 
requires numerical inputs:
• Data PDFs for all model components
• Constraint PDFs for all sources systematics
• Impact of each systematic uncertainty on all relevant model parameters

→ Statistical methods are only as accurate (and/or optimal) as the description 
provided by the model!

Technically, MC simulation provides most of these inputs. However 2 
problematic issues:
• Potential MC/data diferences
• Limited MC statistics 

Which need to be addressed with (yet more) systematics.
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Statistical Modeling:
I. Component PDFs
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PDFs : Binned likelihood 
Binned case:
→ PDF usually just a normalized histogram, from 
• MC sample or 
• Data control region (CRo)

 ⇒ Statistical uncertainties on the prediction:
• Data CRo: counts as statistical uncertainty
• MC sample: uncertainty can be reduced without collecting more data 

(just need more CPU!)  Counted as ⇒ systematic

Independent counts in each bin 
 a separate ⇒ MC statistics NP in each bin

→ Poisson constraints Pois(Ni
MC; Ni

true)

Total uncertainty ~ 

 ⇒ need enough MC to avoid spoiling the sensitivity! 

Eur. Phys. J. C (2012) 72: 2241

JHEP 12 (2017) 024

√σ data stats
2

+σMC stats
2

+  ...

http://link.springer.com/article/10.1140/epjc/s10052-012-2241-5
https://link.springer.com/article/10.1007/JHEP12(2017)024
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MC Statistics Roequirements
e.g. Discovery: Total uncertainty:

 ⇒ need 

By how much ? 

In the presence of a signal (e.g. limit-setting,
Nsig measurement), relevant uncertainty is √(S+B).

 ⇒ S/B also matters:

• low S/B : same problem as for discovery
• high S/B : no issue, dominated by uncertainty

        on signal itself.

Eur. Phys. J. C (2012) 72: 2241

σ S
2
∼ √σ data stats

2
+σMC stats

2
+ ...

σMC stats≪σ data stats BMC/Bdata

(α)
 σMC stats/σdata stats

(1/√α)
σdata+MC stats/σdata stats

[ √(1+α-1) )

1 1 1.41
4 0.5 1.12
25 0.2 1.02

BMC≫Bdata

σ S

S
∼ √ 1 +

S
B

+
Bdata

BMC

1
1+S /B

http://link.springer.com/article/10.1140/epjc/s10052-012-2241-5
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PDF shapes: Unbinned likelihood
Smooth backgrounds : Describe distribution using appropriate function 

 ⇒ Unbinned likelihood. Describes sideband + signal region in one ft.

Crystal Ball
Function

Gaussians

Exp

Phys. Rev. Lett. 118 (2017), 191801

BDT > 0.9

S. Oggero Ph. D. Thesis

Phys. Lett. B241 (1990) 278-282

ARGUS function

√ 1−
M2

E2

exp[−a ( 1−
M2

E2 ) ]

Functions help 
smooth MC stats 
fuctuations

https://inspirehep.net/record/1517782
http://www.nikhef.nl/pub/services/biblio/theses_pdf/thesis_S_Oggero.pdf
http://inspirehep.net/record/294600
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PDF Shapes: Unbinned likelihood
Widely used in HEP for smooth backgrounds (→ no resonances or threshold)

exp(-a.m + b.m2)
(Gaussian )

X→ jj Search
Phys.Lett. B754 (2016) 302-322

a ( 1−
M
E )

b

(
M
E )

c

H→ γγ Measurements

http://inspirehep.net/record/1408292
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Signal Bias in Unbinned likelihoods
Function usually ad-hoc (no closed form expression for (theory  detector ⊗
efects), or usually even theory by itself…)
→ may not accurately describe the data

 ⇒ Introduce free parameters, ft in sidebands
→ Biases may still remain due to 
     functional form itself

Problematic especially for low S/B
→ small mismodelings of B can be large
    compared to S.

→ χ2 test in sideband may not help: even 
a large bias on the scale of S (  B) may ≪
remain within stat errors in the sideband!

Situation doesn’t improve with more luminosity:
→ Reduced statistical uncertainties in sideband, but
→ Also reduced σS, in the same proportion

2.5σ

exponential

Jan 2012 Higgs search paper
(4.9 fb-1 of 2011 data)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-02/
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Signal Bias in Unbinned likelihoods
Function usually ad-hoc (no closed form expression for (theory  detector ⊗
efects), or usually even theory by itself…)
→ may not accurately describe the data

 ⇒ Introduce free parameters, ft in sidebands
→ Biases may still remain due to 
     functional form itself

Problematic especially for low S/B
→ small mismodelings of B can be large
    compared to S.

→ χ2 test in sideband may not help: even 
a large bias on the scale of S (  B) may ≪
remain within stat errors in the sideband!

Situation doesn’t improve with more luminosity:
→ Reduced statistical uncertainties in sideband, but
→ Also reduced σS, in the same proportion

polynomial

3.0σ

Jan 2012 Higgs search paper
(4.9 fb-1 of 2011 data)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-02/
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Signal Bias in Unbinned likelihoods
If data cannot fx B shape, use MC
→ Measure signal bias NSS on “credible”
shapes taken from MC (Spurious signal)
→ take the maximum bias as systematic

Works well if the true distribution is somewhere 
in the space of MC distributions scanned…

Also Impose:

NSS < 20% σstat (small contribution to σtotal)
ORo 

NSS < 10% Sexp (small bias on measured S)

Second criterion more stringent at higher S/√B.

If criteria are not met, move to more complex 
functions (→ more free parameters)
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Signal Bias in Unbinned likelihoods
Problem: for small MC stats, measured bias dominated by fuctuations
→ again, need high MC stats (BMC > 25 Bdata) when S/B is low.

→ Can compromise on criterion level
     (50% instead of 20% ?)

→ As before, better situation at at high S/B 

BMC/Bdata

(α)
 σMC stats/σdata stats

(1/√α)
σdata+MC stats/σdata stats

[ √(1+α-1) )

1 100% 1.41
4 50% 1.12
25 20% 1.02

Phys. Rev. Lett. 118, 182001 (2017)

NSS < 20% σstat

https://inspirehep.net/record/1608879
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Usual Functions
Polynomials: various basis choices (Chebyshev, Bernstein,…)

Bernstein basis:

→ Positive coefcients  positive polynomial  ⇒
everywhere, useful to avoid numerical issues 
in -2 log(PDF) computation

Exponential family : exp(polynomial)
Power laws : xα, xα(1-x)β, …

Gaussians
Crystal Ball Functions

→ Sums of the above
→ Convolutions (resolution  Breit-Wigner, ...)⊗

Comm. Soc. Math. Kharkov 13, 1-2, 1912. 

Bk , n(x)=( kn ) xk (1− x)n−k  for 0≤x≤1

JINST 10 (2015) no.04, P04015

https://inspirehep.net/record/1312971
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Discrete Profling
Idea: treat the type of function and 
number of parameters as discrete 
NPs, profled in data
→ Let data choose the best shape
→ Similar principle as other NPs,
except for discrete nature
→ Need a penalty on Npars to avoid
     always choosing functions with high Npars 

→ Used in the CMS H→γγ analysis,
works well in this context.

Caveats:
→ for N categories and M functional forms, MN

 possibilities to check in principle – difcult in practice
→ Need a well-chosen pool of sensible functions for
the method to work
→ Large MC samples for selection and checks

JINST 10 (2015) no.04, P04015

Take lower envelope of all 
functions when profling

http://inspirehep.net/record/1304454
https://inspirehep.net/record/1312971
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Gaussian Processes: 1-slide Summary

Image Credits: 
K. Cranmer 
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Gaussian Processes: Longer 1-slide Summary
• Describe background distribution through the correlations between values 

at diferent points.
• More fexible than a functional form
• Correlation function (Kernel) can be

– Defned using a length scale, to ignore narrow peaks
– Obtained from frst principles (e.g. from known JES/PDF efects)

 ⊕ More flexible than functional form, degrees of freedom less ad-hoc
 ⊖ Still need large MC samples to check for signal bias
 ⊖ Mainly for Gaussian processes, not well-adapted to Poisson regime

arXiv:17 09.056 81

K (x1 , x2)=exp [−(x1− x2)
2

2L2 ]

https://inspirehep.net/record/1624168
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Statistical Modeling:
II. Systematics
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Systematics NPs
Each systematics NP represent an independent source of uncertainty

 ⇒ Usually constrained by a single 1-D PDF (Gaussian, etc.)

Sometimes multiple parameters conjointly constrained by an n-dim. PDF.
→ multiple measurements constraining multiple NPs 
Assume n-dim Gaussian PDF: then can diagonalize the covariance matrix C 
and re-express the uncertainties in basis of eigenvector NPs  ⇒ n 1-dim PDFs

Can also diagonalize to prune irrelevant uncertainties: keep NPs with large 
eigenvalues, combine in quadrature the others 

Phys.Rev. D96 (2017) no.7, 072002

80 NPs
19 NPs vs 80 3 NPs vs. 80

http://inspirehep.net/record/1519834
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Systematics : Impact on Model
The efect of each NP θi should be propagated
 to all the relevant model parameters Xj. 

→ Propagation through MC: 
1. Apply ±1σ systematic variations in MC, 
     ⇒ obtain shifted values Xj

± = Xj
0 (1 ± Δij).

    → Possibly smooth out MC stats efects

2. Implement systematic in model, e.g. replace
    or morph shapes:

→ can afect event yields, shapes, etc.
Assumes Gaussian uncertainties and linear impact on model parameters

X j → X j
0
(1 + Δ ijθi)

θ=0θ=-1 θ=+1

Constrained by unit Gaussian
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Systematics : Constraints
Ideally, constraint = likelihood of auxiliary measurement 

  e.g. Poisson for constraint from counting in a low-stat CR.⇒

Sometimes no clear auxiliary measurement
 Semi-arbitrary “pseudo-measurement” motivated by Central Limit Theorem:⇒

• Gaussian for additive corrections
• Log-normal for multiplicative corrections

Gaussian: 
• represent impact as  

→ or similar morphing for distributions

Can include asymmetric variations Δ+, Δ-:

However discontinuity in derivative at 0, so use smooth interpolation instead,
e.g. implementation in RooStats::HistFactory::FlexibleInterpVar.

X j → X j
0
(1 + Δ ijθi)

X j → X j
0 ( 1 + {

Δ ij
+
θ i θ i > 0

Δ ij
−
θ i θ i < 0 } )

Constrained by unit Gaussian
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Systematics : Log-normal Constraint
Log-normal: x ~ log-normal if log(x) is normal
→ always > 0, useful to avoid numerical issues
→ PDF:

However usually simpler to implement as :
X j → X j

0 exp(κ ijθi)

P (s ; X0,κ)=
1

x κ √2π
exp (− 1

2
( log (x)−X0

κ )
2

)

log
n
√ (X0 k1) (X0 k2) ...(X0kn) =

1
n∑i=1

n

log(X0 ki) ∼
n→∞

G ( log X0 ,
RMS( log (k ))

√ n
=κ)

where θi is constrained by a unit Gaussian as usual
→ Correct form for a multiplicative uncertainty:

Similarly to Gaussian → represent X = X0 eκθ ~ G(log X0, κ) if  θ ~ G(0,1)
Which κ to use ? κ = RMS(X) only at frst order. For larger uncertainties,
 e.g. Match ±1σ variations: Xj(θ=±1) = Xj

± ⇒ κ± =± log (X j
±
/ X j

0
)

Implemented in RooStats::HistFactory::FlexibleInterpVar.
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Systematics : Theory Constraints
Missing high-order terms in perturbative calculations: evaluate from scale
     variations – but no underlying random process. Possible constraint shapes:

• Gaussians (ATLAS/CMS Higgs analyses, see Yellow Report 4, I.4.1.d)
→ Usually several independent “sources” of 
uncertainty(QCD/EW/resummation) 

 ⇒ overall uncertainty may be rather Gaussian
→ Numerically well-behaved
→ Uncertainties add in quadrature as usual

• Flat constraints : “100% confdence” intervals
→ no preference for any value in the range
→ Need regularization to avoid numerical
     issues
→ uncertainties add linearly

→ For Higgs cross-sections, rather similar results for both cases
 

https://inspirehep.net/record/1494411
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Constraints : Two-point systematics
Sometimes diferences between 2 discrete cases → e.g. Pythia vs. Herwig
Solutions:
• Results for one case only
• Full results for both cases 
• Single result with an uncertainty that covers the diference

→ Two-point uncertainty

Usually implemented as 1D linear interpolations between the two cases
→ However cannot guarantee this covers the space of 
     possible confgurations

 ⇒ This is not even a pseudo-measurement...

Ideally, need to defne proper uncertainties within
a single model, which would cover the other cases
→ e.g. showering uncertainties within Pythia,
             covering Herwig
→ Usually a difcult task

W. Verkerke, SOS 2014

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf
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Profling Issues
Too simple modeling can have unintended efects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties: 
→ Interpolation may not cover full confguration
space, can lead to too-strong constraints

Jet E

JE
S

θJES Pre-ft

Post-ft

Pre -ft constraint Post -ft constraint

W. Verkerke, SOS 2014

NP central values and uncertainties in pull/impact plots
provide important “debugging” information for profling

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf


Outline

Profling

Look-Elsewhere Efect

Bayesian methods

Statistical modeling in practice
Building binned likelihoods
Choosing PDFs in unbinned likelihoods
Implementing systematics

BLUE 
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BLUE
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BLUE
Commonly-used ansatz for combination
of measurements:
1. Build a χ2: (same as -2logL 

  for Gaussian L)

2. Estimate combined X from minimum of χ2(X)

• In the Gaussian case, equivalent to ML solution 
 inherits good properties:⇒

– Unbiased : <X̂> = X*
– Optimal: minimizes the combined uncertainty

• Solution is a linear combination of the inputs:

Þ  “Best Linear Unbiased Estimator” (BLUE)

χ
2
(X )=∑

i
( X i

obs
−X )C ij

−1 ( X j
obs
−X )

Cij : covariance matrix of 
measurements:

C=[
σ1

2
ρσ1σ2 ⋯

ρσ1σ2 σ2
2

⋯

⋮ ⋮ ⋱
]

ρ: correlation coefcients 

X̂ =∑
i

λ i X
obs , i

λi = combination weight 
of measurement i

λ =
C−1 J

JTC−1J
, J=(

1
1
⋮

)
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BLUE Example
Example: World mtop combination

ATLAS-CONF-2014-008

Limitation: relies on Gaussian assumptions (satisfed in this case!)
Negative weights possible! (for large correlations, see Eur. Phy. J. C 74 (2014), 2717)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-008/
https://inspirehep.net/record/1242645
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BLUE and PLRo
X1 = X + Δ1θ ∼ G (X* ,σ 1)

X2 = X + Δ2θ ∼ G (X* ,σ 2)

θ ∼ G (0, 1)

σ1 , tot
2

= σ1
2
+ Δ1

2

PLRo Computation:    2 measurements 
+ 1 auxiliary measurement

Single measurement: λ(X ,θ) =
1

σ1
2 (X + Δ1θ−X1

obs
)

2
+ (θ−θ

obs
)

2

Combination: λ(X ,θ) =
1

σ1
2 (X + Δ1θ−X1

obs
)

2
+

1

σ2
2 (X + Δ2θ−X 2

obs
)
2
+ (θ−θ

obs
)

2

X̂ = λ 1X1
obs

+ λ 2X2
obs

+ λθθ
obs λ 1(2) =

σ 2(1) , tot
2

− Δ 1Δ 2

σ 1 , tot
2

+ σ2 , tot
2

− 2Δ1Δ 2

σ X , tot
2

=
σ1 , tot

2
σ 2 , tot

2
−Δ1

2
Δ 2

2

σ 1 , tot
2

+ σ2 , tot
2

− 2Δ 1Δ2

λ (X ) =
(X− X̂ )2

σ X , tot
2

X̂ = X1
obs

− Δ 1θ
obs

θ̂ = θ
obs

λ (X ) =
(X− X̂ )

2

σ1, tot
2

MLEs:

PLRo:

MLE:

PLRo:
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BLUE and PLRo
BLUE computation: measurements X1 and X2 with uncorrelated 
statistical uncertainties σ1 and σ2, correlated systematics Δ1 and Δ2. 

Single measurement: stat uncertainty σ1 , systematic Δ1

- Uncorrelated uncertainties
- Assume everything is Gaussian

 ⇒ Uncertainties add 
    in quadrature:

C = [
σ1, tot

2
ρσ1, totσ 2, tot

ρσ 1, totσ 2, tot σ2, tot
2 ] ρ =

Δ1Δ 2

σ 1 , totσ 2 , tot

Eur. Phys. J. C, 74 (2014) 2717

σ1 , tot
2

= σ1
2
+ Δ1

2

Combination:

BLUE weights X̂ = λ 1X1
obs

+ λ 2X 2
obs λ 1(2) =

σ 2(1) , tot
2

− ρσ 1 , totσ 2 , tot

σ 1 , tot
2

+ σ2 , tot
2

− 2ρσ 1 , totσ 2 , tot

σ X , tot
2

=
σ1 , tot

2
σ 2 , tot

2
(1 − ρ

2
)

σ 1 , tot
2

+ σ2 , tot
2

− 2ρσ1 , totσ 2 , tot
Propagate uncertainties from C:

https://inspirehep.net/record/1242645
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Negative BLUE Weights

λ 2 =
σ 1 , tot(σ 1 , tot−ρσ2 , tot)

σ 1 , tot
2

+ σ 2 , tot
2

− 2ρσ 1 , tot σ 2 , tot

< 0  for  ρ >
σ1 , tot

σ 2 , tot

Occasionally, negative BLUE weights:
Can happen if ρ ~ 1: 

Not intuitive! (Can also have λ2 = 0 for σ1,tot = ρ σ2,tot…)
Can be explained in the PLR picture:

Without correlated systematics (Δ = 0):
X1

obs X2
obsX̂

λ 1(2) =
σ 2(1)

2

σ 1
2
+ σ2

2
> 0

X1 = X + Δ θ

X2 = X + 2Δ θ

X1
obs X2

obsX̂
λ1 < 0

Δ

Δθ̂ 

ρ ~ 1  θ measurement is important  possibly very diferent MLE than X⇒ ⇒ 1⊕X2...

With large correlated systematics (Δ  σ≫ 1,2)

X
1

X
2

Δθ̂

θ̂ value makes X1 and X2 
match observations, 
small pull on θ if Δ is large
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Uncertainty Decomposition
Often useful to break down uncertainties into components (stat + syst, etc.)

PLRo approach: perform measurement twice
1. With all uncertainties included 

→ nominal uncertainty σtotal.
2. Removing some uncertainties 

(e.g. all syst uncertainties) → σno-syst

Þ Subtract in quadrature: 

BLUE-based approach: 
1. Propagate each source of uncertainty (stat & syst) to the observables
2. Propagate through to the measurement using

the BLUE weights

The two methods are not completely equivalent (recently discovered!)
→ In the BLUE case, weights still computed including systematics efects 

X̂ =∑
i

λ i X
obs , i

σ syst=√σ total
2

−σno-syst
2
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Presentation of Roesults
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Presentation of Roesults
Measurements often recast to constrain a particular theory model. 
→ Ideally, by reparameterizing the likelihood and repeating the measurement

Þ Done by experiments for selected benchmark models
→ However, often too complex to implement widely:
• Full likelihood typically not published
• theorists typically do not want to deal with 4000 NPs...

→ Other approaches: e.g. reimplementing the analysis in a public fast-
simulation framework (e.g. SUSY searches). However clear accuracy limitations
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Presentation of Roesults
→ Current solution: publish covariance matrices in HEPData, together with the 
individual measurements

→ Only valid in the Gaussian approximation
→ To go further, need some form of simplifed likelihoods
• Profle likelihood – function of POI only (NPs profled out)
• Additional terms for non-Gaussian efects
→ Signifcantly more complex (many dimensions!)
→ Will be needed eventually as measurements become syst-dominated

https://hepdata.net/
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Conclusion
• Signifcant evolution in the statistical methods used in HEP

• Variety of methods, adapted to various situations and target results

• Allow to
– model the statistical process with high precision in difcult situations 

(large systematics, small signals)
– make optimal use of available information

• Implemented in standard RooFit/RooStat toolkits within the ROOT 
framework, as well as other tools (BAT)

• Improvement and uniformization eforts are still ongoing

• Still many open questions and areas that could use improvement
→ e.g. how to present results with all available information to the “outside”
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Extra Slides
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Uncertainty decomposition
All systematics NPs fxed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fxed to 0 : stat+theory uncertainty

σ syst = √σ total
2

− σ stat
2

σ theo = √σ stat+theo
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
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Gaussian Profling

μ

θ

L(μ ,θ ;μ̂ , θ̂) = exp [− 1
2 (

μ−μ̂

θ−θ̂ )
T

C−1 (
μ−μ̂

θ−θ̂ ) ]

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ (μ−μ̂)
2
+ 2Fμ θ(μ−μ̂ )(θ−θ̂) + Fθ θ(θ−θ̂)

2

“data”
C = [ σ μ

2
γ σμσ θ

γ σμ σθ σθ
2 ]

Gaussian measurement with 1 POI μ and 1 NP θ:

→ λ(μ, θ) defnes an ellipse:

σμ σ θ

Uncertainty on μ:
● From C, with θ 

included: σμ

F ≡ C−1

(μ̂ , θ̂ )

= [ Fμ μ Fμ θ

Fμ θ Fθθ ]
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Gaussian Profling

^̂
θ (μ

)

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ (μ−μ̂)
2
+2Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

Profle likelihood ratio:

Uncertainty on μ:

● From C:
● From PLRo:

λ(μ ,
^̂
θ(μ) ;μ̂ , θ̂ ) = (Fμμ−Fμ θFθ θ

−1Fθμ ) (μ−μ̂)
2
= Cμμ

−1
(μ−μ̂)

2
= ( μ−μ̂

σμ )
2

Proof of Wilks’ theorem...

μ

θ

^̂
θ(μ) = θ̂ − Fθθ

−1Fθ μ(μ − μ̂)

Profled θ (minimize λ at fxed μ) :

σμ

σμ

Profled θ crosses ellipse at 
vertical tangents by 
defnition (L is lower at other 
points on the tangent)

Fμμ ≠ Cμμ

−1  !!

C = [ σμ

2
γ σμσ θ

γ σμσθ σθ

2 ]

(μ̂ , θ̂ )

F = [
Fμμ Fμ θ

Fμ θ Fθθ ]
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Gaussian Profling

λ(μ ,θ = θ̂ ;μ̂ , θ̂) = Fμμ(μ−μ̂)
2
= (

μ−μ̂

σμ √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ μ

2

γ
σμ σ θ

γ
σμ σθ

1

σ θ
2 ]→ For fxed θ = θ̂, λ(μ) defnes an interval:

σμ √ 1 − γ
2

μ

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ(μ−μ̂)
2
+2Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θUncertainty on μ:

● From C:
● From PLRo:

● From λ(μ):

σμ

σμ √1 − γ
2

σμ

(μ̂ , θ̂ )
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Gaussian Profling

λ(μ ,θ = θ̂ ;μ̂ , θ̂) = Fμμ(μ−μ̂)
2
= (

μ−μ̂

σμ √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ μ

2

γ
σμ σ θ

γ
σμ σθ

1

σ θ
2 ]→ For fxed θ = θ̂, λ(μ) defnes an interval:

σμ √ 1 − γ
2

μ

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ(μ−μ̂)
2
+2Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θ

Total uncertainty

Uncertainty on μ:

● From C:
● From PLRo:

● From λ(μ):

σμ

σμ √1 − γ
2

σμ

σμ = √ ( √1 − γ
2
σμ )

2
+ ( γ σμ )

2

Stat uncertainty Syst uncertainty
(μ̂ , θ̂ )



79

Comparison with LEP/TeVatron defnitions
Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profled NPs

Both compare to μ=1 instead of best-ft μ ̂

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

μ=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L(μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Tevatron

LHC

μ=0

A
ndrey Korytov , EPS 20 11
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Spin/Parity Measurements
Phys. Rev. D 92 (2015) 012004 

http://dx.doi.org/10.1103/PhysRevD.92.012004

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	page10 (1)
	page10 (2)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	page20 (1)
	page20 (2)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	page43 (1)
	page43 (2)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	page74 (1)
	page74 (2)
	Slide 79
	Slide 80

