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Introduction
Statistical methods play a critical 
role in high-energy physics

Higgs discovery :  “We have 5s” !

“5s”

Phys. Lett. B 716 (2012) 1-29

http://www.sciencedirect.com/science/article/pii/S037026931200857X
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Introduction

JHEP 09 (2016) 1

Sometimes difcult to distinguish a bona fde discovery 
from a  background fuctuation…

New Physics ? 
3.9σ !? ... 2.1σ

http://link.springer.com/article/10.1007/JHEP09%282016%29001
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Uncertainties

Many important questions answered by precision measurements,
especially if no new peaks found at high mass…
Key point = determination of uncertainties

 arXiv:1701.07240

JHEP12(2013)089

Consistency of the SM... … or the fate of the universe

https://arxiv.org/abs/1701.07240
http://inspirehep.net/record/1242456?ln=en
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Overview
Topics covered:
• Computing statistics results
• Interpreting statistical results
• Understanding the measurement process (what is a systematic ?)

Prerequisites:
• Some background in High energy physics
• Some basic knowledge of statistics – but will review the basics.

I will mostly use the “physics” names of statistical quantities, rather than those 
used in the statistics community (“signifcance” and not “size of a test”, etc.) 

Much of the discussion and examples have an ATLAS/CMS/LHC slant due to 
my limited experience… But hopefully the concepts should be generally 
applicable.
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Books and Courses

Some courses available online:
Glen Cowan’s Cours d’Hiver and 2010 CERN Academic Training lectures
Kyle Cranmer’s CERN Academic Training lectures
Louis Lyons’and Lorenzo Moneta’s CERN Academic Training Lectures

https://indico.lal.in2p3.fr/event/1681/
https://indico.cern.ch/event/77830/
https://indico.cern.ch/event/126254/
https://indico.cern.ch/event/545212/
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Outline

Statistics basics for HEP
Random processes
Probability distributions

Describing HEP measurements

Computing statistics results
Likelihoods
Estimating parameter values
Testing hypotheses
Computing discovery signifcance

Tomorrow: Limits, look-elsewhere efect, Profling, Bayesian methods
Wednesday: Practical modeling, Unfolding
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Random Processes



9

Random Processes

Statistics is the description of random processes. Where 
does this come into HEP ?

Measurement
errors

Quantum 
Randomness



10

Randomness in High-Energy Physics
Collider data is produced by incredibly complex processes
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Randomness in High-Energy Physics

Randomness involved in all stages
→ Classical randomness: detector reponse
→ Quantum efects in production, decay

Decays

Hard scattering

PDFs, Parton shower, Pileup

Detector response

Collider data is produced by incredibly complex processes

Reconstruction

Image Credits: 
S. Höche, 
SLAC-PUB-16160

https://arxiv.org/abs/1411.4085
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Measurement Errors: Energy measurement
Example: measuring the energy of a photon in a calorimeter

g
Calorimeter Readout

Cannot predict the measured value for a given event  Random process⇒

 Need a probabilistic description⇒
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Measurement Errors: Energy measurement
Example: measuring the energy of a photon in a calorimeter

g
Calorimeter Readout

Energy
deposition

Perfect case

Cannot predict the measured value for a given event  Random process⇒

 Need a probabilistic description⇒
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Measurement Errors: Energy measurement
Example: measuring the energy of a photon in a calorimeter

Calorimeter Readout

g

Real lifePerfect case

Cannot predict the measured value for a given event  Random process⇒

 Need a probabilistic description⇒
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Measurement Errors: Energy measurement
Example: measuring the energy of a photon in a calorimeter

Calorimeter Readout

g

Measure leakage 
into neighboring cells

Measure leakage behind calorimeter

Real lifePerfect case

Cannot predict the measured value for a given event  Random process⇒

 Need a probabilistic description⇒
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Quantum Randomness: H®ZZ*®4l
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Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006

View online 

https://cds.cern.ch/record/2230893/files/Higgs4l.gif?download=1
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Quantum Randomness: H®ZZ*®4l
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Quantum randomness: “Will I get an event today ?” → only probabilistic answer

Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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Randomness in High-Energy Physics

Questions with probabilistic answers:

• Is my Higgs-like excess just a 
background fuctuation? 
→ associated with prob ~10-9 (by now ~10-24) 
Þ above the famous (and conventional) 5σ

• For measurements: probability that 
the true value of a parameter is 
within an interval:

68% chance that the true mW 
is within the orange interval
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Randomness in High-Energy Physics
Particularly important for New physics searches:
→  Robust methods needed to control spurious “discoveries”…
→ … and accurately report the signifcance of excesses in case of surprises

Phys. Lett. B 775 (2017) 105JHEP 09 (2016) 1

1 Year
Later

https://arxiv.org/abs/1707.04147
http://link.springer.com/article/10.1007/JHEP09%282016%29001
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Example Analyses
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Example 1: Z→ee Inclusive σfd 
Measurement Principle:

Simple uncertainty propagation:

→ Simplest possible example in several ways
– “Single bin counting” : only data input is Ndata.
– Here Gaussian assumptions

s
fid
=
N data−N bkg

C fidL

35000 ± [√35000 = 187]

Phys. Lett. B 759 (2016) 601
175 ± 8

0.552 ± 0.006

(81 ± 2) pb-1

σfd = 0.781 ± 0.004 (stat) ± 0.008 (syst) ± 0.016 (lumi) nb

http://dx.doi.org/10.1016/j.physletb.2016.06.023
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Example 2: ttH→bb 

Event counting in diferent regions: 
Multiple-bin counting

Lots of information available
→ How to make optimal use of it ?

Goals: 
→ discovery signifcance, 
→ σ × BR measurement

arXiv:1712.008895

http://inspirehep.net/record/1644900
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Example 3: Unbinned shape analysis

Describe spectrum without 
discrete binning
→ use smooth functions of a 
continuous variable.

Unbinned shape analysis

How to describe the shapes ?

Goals:
→ Discovery signifcance
→ σ × BR measurements
→ Upper limits.

Phys. Lett. B 775 (2017) 105

https://arxiv.org/abs/1707.04147


25

Probability Distributions
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Short reminder on Probability 
Distribution functions (PDFs)
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Probability Distributions

Probabilistic treatment of possible outcomes 
Þ Probability Distribution

Example: two-coin toss
→ Fractions of events in each bin i 
converge to a limit pi

Probability distribution : 
{ Pi } for i = 0, 1, 2

Properties
• Pi > 0
• Σ Pi=1
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Probability Distributions
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Continuous Variables: PDFs
Continuous variable: can consider per-bin probabilities pi, i=1.. nbins

Bin size ® 0 : Probability distribution function P(x)
→ High values Û high chance to get a measurement here
→ P(x) > 0
→ ò P(x) dx = 1

Generalizes to multiple variables : ò P(x,y) dx dy = 1

x
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Continuous Variables: PDFs
Continuous variable: can consider per-bin probabilities pi, i=1.. nbins

Bin size ® 0 : Probability distribution function P(x)
→ High values Û high chance to get a measurement here
→ P(x) > 0
→ ò P(x) dx = 1

Generalizes to multiple variables : ò P(x,y) dx dy = 1

y
Contours: 
P(x,y)

x
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PDF Properties: Mean

E(x) = <x> : Mean of x – expected outcome 
on average over many measurements

→ Property of the PDF

For measurements x1... xn, 
then can compute the Sample mean:

→ Property of the sample
→ approximates the PDF mean.

⟨ x ⟩ =ò x P (x) dx

⟨ x ⟩ =∑
i

xi P i or

PDF Mean Sample Mean

PDF Mean

x̄ =
1
n
∑
i

x i
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PDF Properties: Variance
Variance of x:

→ Average square of deviation from mean
→ RMS(x) = ÖVar(x) = σx  standard deviation

Can be approximated by sample variance:

Covariance of x and y: 

→ Large if variations of x, y are “synchronized”
• Cov(x, y) > 0 if x and y vary in the same direction
• Cov(x, y) < 0 if x and y vary in opposite direction
• Cov(x, y) = 0 if x and y vary independently

ŝ
2
=

1
n−1∑i

(x i− x̄)2

RMS

y

x

Correlation coefcient

g =
Cov (x , y)

√Var( x)Var( y)

Var( x)=⟨ ( x − ⟨ x⟩ )2
⟩

Cov( x)=⟨ (x − ⟨ x⟩ ) ( y − ⟨ y ⟩) ⟩
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Gaussian PDF
Gaussian distribution:

→ Mean : X0

→ Variance : s2 (Þ RMS = s)

Generalize to N dimensions:
→ Mean : X0

→ Covariance matrix :

G (x ; X0 ,s )=
1

s √2π
e
−
(x−X0)

2

2s2

x0

s

G (x ; X0 ,C )=
1

(2π|C|)N /2
e
−

1
2
(x−X0)

TC−1
(x−X0)

C = [ Var( x1) Cov ( x1 , x2)

Cov (x2 , x1) Var( x2) ]

x1

x2

= [
s x1

2
g s x1

s x2

g s x1
s x2

s x2

2 ]
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Central Limit Theorem
For an observable X with any distribution, one has(*)

What this means:
• The average of many measurements is always Gaussian, whatever the 

distribution for a single measurement
• The mean of the Gaussian is the average of the single measurements
• The RMS of the Gaussian decreases as Ön : less fuctuations when averaging 

over many measurements

Another version,
for the sum:

Mean scales like n, but RMS only like Ön

x̄ =
1
n∑i=1

n

xi ∼
n→∞

G ( ⟨ X ⟩ ,
s X

√n
)

∑
i=1

n

xi ∼
n→∞

G ( n ⟨ x ⟩ , √n s x)

(*) Assuming σX < ∞ 
and other regularity 
conditions 
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Central Limit Theorem in action

Draw events from a x2 distribution (for illustration only)

Distribution becomes Gaussian, although very non-Gaussian originally
Distribution becomes narrower as expected (as 1/Ön )

x̄ =
1
n∑i=1

n

xi

x̄
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Describing HEP measurements
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Statistical Model

Goal: 
Describe the random process by 
which the data was obtained.

→ Build a Statistical Model

Ingredients:
1. Statistical description of the random aspects  

 Probability distributions⇒
2. Assumptions on the underlying 

statistical processes (physics, etc.)
→ Uncertainties on the assumptions 
     themselves: systematic uncertainties 

Statistical results can only be as accurate as the model itself ! 

Decays

Hard scattering

Detector response

Reconstruction

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Counting events
Consider N total events, select good events with probability P.
Probability to get n good events ? 

Binomial distribution :
Mean = N.P
Variance = N.P(1 - P)

However suppose P  1, N  1≪ ≫ , and let λ = N.P :
→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution:
Mean = λ
Variance = λ      ⇒ RMS = √λ

N trials

n good events

P (n ;N ,P )=CN
n Pn

(1−P)N−n

P (n ;λ)=e−λ λ
n

n!
(1−P)N−n

∼
n≪N

(1−
λ
N )

N

∼
N≫1

e−λ

Uncertainty of √N on N expected events
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Rare Processes ?
HEP : almost always use Poisson 
distributions. Why ?
 
ATLAS : 
• Event rate ~ 1 GHz

(L~1034 cm-2s-1~10 nb-1/s, stot~108 nb, )
• Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)
 ⇒ P ~ 10-6  1 ≪ (PH→γγ ~ 10-13)

A day of data: N ~ 1014  1 ≫
Þ Poisson regime!

(Large N = design requirement,
to get not-too-small λ=NP...)

W.J. Stirling, private 
communication
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Poisson Distributions

● Discrete distribution (integers only), asymmetric for small λ
● Typical variation (RMS) of n events is √n
● Central limit theorem : becomes Gaussian for large λ : 

P(n ;λ)=e−λ λ
n

n!

λ : expected 
number of events

Mean = λ
Variance = λ
σ = √λ

P (λ) →
λ → ∞

G( λ , √λ )
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Statistical Model for Counting
Counting experiment:
observable: a number of events n 
→ describe by a Poisson distribution

Typically both signal and background expected:

We have assumed a Poisson distribution for n : This is our model, based on 
physics knowledge (but usually a very safe one).

Model has parameters S and B. B can be known a priori or not (S usually not...)
→ Example: can assume B is known, use the measured n to fnd out about the 
parameter S.

P (n ;λ ) = e−λ λ
n

n!

P (n ;S , B)=e−(S + B) (S + B) n

n!
S : # of events from signal process
B : # of events from bkg. process(es)

usually up to uncertainties → systematics
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Z→ee Inclusive σfd 
Measurement Principle:

Simple uncertainty propagation:

→ Simplest possible example in several ways
– “Single bin counting” : only data input is Ndata.

– Describe using Poisson distribution, or Gaussian for large ndata

s
fid
=
ndata−N bkg

C fid L

35000 ± [√35000 = 187]

Phys. Lett. B 759 (2016) 601
175 ± 8

0.552 ± 0.006

(81 ± 2) pb-1

σfd = 0.781 ± 0.004 (stat) ± 0.008 (syst) ± 0.016 (lumi) nb
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Unbinned Shape Analysis
Observable: set of values m1... mn, one per event
→ Describe shape of the distribution of m
→ Deduce the probability to observe m1... mn

H→γγ-inspired example:
• Gaussian signal 
• Exponential bkg

 ⇒ Total PDF for a single event:

 ⇒ Total PDF for a dataset

P signal(m) = G(m;mH ,s)

P total (m) =
S

S+B
G (m;mH ,s) +

B
S+B

α e−α m

P bkg(m) = α e−αm

slope α

mH

s

Signal

Background

Total

P ({mi }i=1…n) = e−(S+B) (S+B)
n

n! ∏
i=1

n
S

S+B
G(mi ;mH ,s) +

B
S+B

α e−αmi

Probability to observe
the value miProbability to observe n events

Expected yields : S, B

http://dx.doi.org/10.1016/j.physletb.2016.06.023
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H→γγ
ATLAS-CONF-2017-045
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The Halfway Option: Binned Shape Analysis
Instead of using m1...mn directly, can build a histogram n1...nN. 
→ N : number of bins
 

N=1: Counting analysis
N→∞: Unbinned shape analysis (the fractions become PDF values)

Shapes specifed through fS,i, fB,i rather than Psignal(m), Pbkg(m)
⊕ Obtained directly from MC, no need to defne continuous PDFs.
⊖ MC stat fuctuations can create artefacts, especially for S B.≪
→ discussed in more detail on Wednesday

P ({ni } ;S , B) =∏
i=1

N

e−(Sf S , i+Bf B , i)
(S f S , i+B f B , i)

ni

ni !

Per-bin fractions (=shapes)
of Signal and Background

Poisson distribution in each bin

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
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Summary: How to describe data
Description Observable Likelihood

Counting n : measured number 
of  events

Poisson

S, B : expected signal & background
Binned shape 
analysis

ni, i=1..Nbins : 
measured events in 
each bin.

Poisson product

S, B : expected signal & background
fsig

i fbkg
i : fraction of sig & bkg in each bin

Unbinned 
shape analysis

mi, i=1..nevts :  
observable value 
for each event

Extended Unbinned Likelihood

S, B : expected signal & background
Psig, Pbkg : PDFs for m in signal and bkg.

P(ni ;S ,B) =∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
ni

ni !

P(n;S ,B) = e−(S + B) (S + B)n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi) + B Pbkg(mi)
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Model Parameters
Model typically includes:

• Parameters of interest (POIs) : what we want to measure
→ S, σ×B, mW, …

• Nuisance parameters (NPs) : other parameters needed to defne the model
→ B
→ For binned data, fsig

i , fbkg
i

→ For unbinned data, parameters needed
     to defne Pbkg 
     e.g. exponential slope α of H→μμ background.

NPs must be either
→ known a priori (possibly within systematics) or
→ constrained by the data (e.g. in sidebands)

Phys. Rev. Lett. 119 (2017) 051802

e−αmμ μ
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Categories
Multiple analysis regions often used:
• Multiple decay modes
• Multiple kinematic selections, etc.

→ Useful to model these separately if
• Better sensitivity in some regions (avoids dilution)
• Some regions can constrain NPs

– e.g. Control regions for backgrounds

Þ Analysis categories : 

No overlaps between categories   No stat. correlations ⇒
Þ can simply take product of PDFs.

→ Similar to a-posteriori combination of the various regions, but allows proper 
handling of correlated parameters (e.g. systematics).

P (S ;{ni
(k )
}
i=1... nevts

(k )

k=1...ncats) =∏
k=1

ncats

Pk ( S ;{ni
(k)
}
i=1...nevts

(k) )

PDF for category k

arXiv:1712.008895

http://inspirehep.net/record/1599399
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Categories for H→γγ Property Measurements
Categories also useful to provide measurements of separate kinematic regions
→ e.g. diferential cross-section measurements

H→ γγ Properties 
Measurement 

(ATLAS-CONF-2017-045)

Ta
rg

et
ed

 tr
ut

h 
re

gi
on

s

Analysis Selections

Most categories aimed at one particular truth region
→ also cross-feed from other regions (detector acceptance, pileup, etc.)

 ⇒ Combined analysis for optimal use of all information

http://inspirehep.net/record/1644900
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Model Example: H→γγ Discovery Analysis

Signal
Shape 

ParametersBackground
Parameters

Signal
PDFs

Bkg
PDFs

Main PDFSignal 
Normalization

mH

μ

Systematics

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
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ATLAS Higgs Combination Model

W. Verkerke, SOS 2014
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Technical Implementation
Implemented in ROOT using the RooFit/RooStats/HistFactory toolkits
• C++ classes for PDFs, formulas, variables, etc.
• Numerical methods: convolutions, automatic computation of normalization 

factors. Analytical evaluation used when possible
• Template morphing

• Storage in RooWorkspace structures within ROOT fles
→ Standard tools in LHC experiments, used in similar ways in ATLAS and CMS

Realistic models can be quite complex: ATLAS+CMS Higgs couplings comb. : 
• 20 POIs, 4200 parameters, 600 categories
• > 7 GB memory footprint
• Time for 1 MINUIT ft ~ O(few hours)

θ=0 θ=1θ=-1

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf
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Takeaways

Description Observable Likelihood

Counting n Poisson

Binned shape 
analysis

ni, i=1..Nbins Poisson product

Unbinned 
shape analysis

mi, i=1..nevts Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S ,B)=e−(S + B) (S + B)n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

HEP data is produced through random processes,
Need to be described using a statistical model:

Model can include multiple categories, each with a separate description
Includes parameters of interest (POIs) but also nuisance parameters (NPs)
Next step: use the model to obtain information on the POIs
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Outline
Statistics basics for HEP

Random processes
Probability distributions

Describing HEP measurements

Computing statistics results
Likelihoods
Estimating parameter values
Testing hypotheses
Computing discovery signifcance
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Computing Statistical Results

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011
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Overview
What we have so far:

• Observed data

• Statistical model :  P(data; parameters)
description of the random process producing the data
→ includes parameters that we want to measure (S, σ × B, mW, ...)

What we want : Statistical Results

• Parameter measurement: x0 ± uncertainty

• Upper limits on signal yields, etc.

• Discovery signifcance

• …

https://arxiv.org/abs/1007.1727


77

Computing Statistical Results
I. Parameter Estimation
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Using the PDF
Model describes the distribution of the observable: P(data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

Generate 

P (λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned
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Likelihood
Model describes the distribution of the observable:  P(n; λ), P(data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

Estimate

P (λ=?) 2

Likelihood:  L(parameters) = P(data;parameters)

?

→ same as the PDF, but seen as function of the parameters
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Poisson Example
Assume Poisson distribution with B = 0 :

Say we observe n=5, want to infer information on the parameter S
→ Try diferent values of S for a fxed data value n=5
→ Varying parameter, fxed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

n
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Poisson Example
Assume Poisson distribution with B = 0 :

Say we observe n=5, want to infer information on the parameter S
→ Try diferent values of S for a fxed data value n=5
→ Varying parameter, fxed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

P(S = 0.5)
Low

likelihood

n
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Poisson Example
Assume Poisson distribution with B = 0 :

Say we observe n=5, want to infer information on the parameter S
→ Try diferent values of S for a fxed data value n=5
→ Varying parameter, fxed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n
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Poisson Example
Assume Poisson distribution with B = 0 :

Say we observe n=5, want to infer information on the parameter S
→ Try diferent values of S for a fxed data value n=5
→ Varying parameter, fxed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

P(S = 20)
Low

likelihood

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n
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Poisson Example
Assume Poisson distribution with B = 0 :

Say we observe n=5, want to infer information on the parameter S
→ Try diferent values of S for a fxed data value n=5
→ Varying parameter, fxed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n

L(S; n=5):
Likelihood 
of S for n=5

S
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Maximum Likelihood Estimation
Estimate a parameter μ : Find the value that maximizes L(μ)

 ⇒ the value of μ for which this data was most likely to occur
→ Maximum Likelihood Estimator, μ̂

Observed 
Value n=5

S = 20S = 5

S = 0.5 

n

s

Likelihood 
of S for n=5

Ŝ = 5,  maximum for n=5

The MLE is a function of the data – itself an observable
No guarantee it is the true value (data may be “unlikely”) but sensible estimate

μ̂=argmax L(μ)



86

MLEs in Shape Analyses
Binned shape analysis:

Need to maximize L(S) : 
in practice easier to minimize 

Or in the Gaussian limit

→ Gaussian MLE (min χ2 or min λGaus) : same Best ft value in a χ2 ft
→ Poisson  MLE (min λPois) : Best ft value in a likelihood ft (in ROOT, ft option “L”)
In RooFit, λPois ⇒ RooAbsPdf::fitTo(), λGaus  ⇒ RooAbsPdf::chi2FitTo().

L(S ;ni) = P(ni ;S) =∏
i=1

N

Pois(ni ;S f i + Bi)

λPois(S) =−2 log L(S) =−2∑
i=1

N

log Pois(ni ;S f i + Bi)

λGaus(S) =∑
i=1

N

−2 logG (ni ;S f i + Bi ,s i) =∑
i=1

N

( ni−(S f i + Bi)
s i )

2

χ2 formula!

In both cases, MLE  ⇔ Best Fit
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H→γγ

Estimate S using MLE S ?

→ Just perform (likelihood) best-
ft of model to data

 ⇒ ft result for S is the desired Ŝ. 

L(S ,B ;mi)=e−(S + B) ∏
i=1

nevts

S Psig (mi)+B Pbkg(mi)

ATLAS-CONF-2017-045

Ŝ 
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MLE Properties

• Consistent: μ̂ converges to the true value for large n,

• Asymptotically Gaussian :

• Asymptotically Efcient : σμ̂ is the lowest possible value (in the limit n®¥) 
among consistent estimators.
→ MLE captures all the available information in the data

• Log-likelihood : Can also minimize λ = -2 log L
→ Usually more efcient numerically 
→ For Gaussian L, λ is parabolic: 

• Can drop multiplicative constants in L (additive constants in λ)

λ (μ) = ( μ̂−μ
sμ )

2

P (μ̂ ) ∝ exp (−
(μ̂−μ

*
)

2

2s μ̂

2 )     for n → ∞

for large datasets

μ̂ →
n→∞

μ
*

Standard deviation of the distribution of μ̂ 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
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Fisher Information
Fisher Information:

Measures the amount of information available in the measurement of μ.

Gaussian likelihood:

→ smaller σLikelihood  more information.⇒

Cramer-Rao bound:
For any estimator μ̂, 

→ cannot be more precise than information allows.

Efcient estimators reach the bound : e.g. MLE in the large n limit.

I (μ) = ⟨ ( ∂
∂μ

log L(μ) )
2

⟩ =− ⟨ ∂
2

∂μ
2 log L(μ) ⟩

I (μ ) =
1

s Likelihood
2

Var(μ̂ ) ≥
1

I (μ )

Gaussian: for any 
estimator μ̂ with 

Var(μ̂) = σμ̂
2

σμ̂
2 ≥ σLikelihood

2 = σMLE
2

P(μ̂ ) ∝ exp (−
(μ̂−μ

*
)

2

2s μ̂

2 )
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What’s next ? Usual Statistical Results
We need more than just best-ft values:

• Discovery: we see an excess – 
is it a (new) signal, or a background 
fuctuation ?

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be ?

• Parameter measurement: what is the 
allowed range (“confdence interval”) 
for a model parameter ?

The Statistical Model already contains all the 
necessary information – how to use it ?
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Computing Statistical Results
II. Testing Hypotheses
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Hypothesis Testing
Hypothesis: assumption on model parameters, say value of S (e.g. H0 : S=0)
→ Goal : determine if H0 is true or false using a test based on the data

 Possible 
 outcomes:
 

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!) Discovery! 

Missed discovery
Type-II error
(1 - Power)

H0 is true 
(Nothing new)

False discovery claim
Type-I error 
(→ p-value, signifcance)

No new physics, 
none found

Stringent discovery criteria 
 ⇒ lower Type-I errors, higher Type-II errors

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

Background

Type-I error
p-value

Signal

Type-II Error
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Hypothesis Testing
Hypothesis: assumption on model parameters, say value of S (e.g. H0 : S=0)
→ Goal : determine if H0 is true or false using a test based on the data

 Possible 
 outcomes:
 

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!) Discovery! 

Missed discovery
Type-II error
(1 - Power)

H0 is true 
(Nothing new)

False discovery claim
Type-I error 
(→ p-value, signifcance)

No new physics, 
none found

Stringent discovery criteria 
 ⇒ lower Type-I errors, higher Type-II errors

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

Background

Type-I error
p-value

Signal

Type-II Error
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H0 and H1, the 
optimal discriminator is the Likelihood ratio (LR) 

As for MLE, choose the hypothesis that is more likely for the data.

→ Minimizes Type-II uncertainties for given level of Type-I uncertainties
→ Always need an alternate hypothesis to test against.

Caveat: Strictly true only for simple hypotheses (no free parameters)

→ In the following: all tests based on LR, will focus on p-values (Type-I errors),
trusting that Type-II errors are anyway as small as they can be...

L(H1 ; data)

L(H0 ;data)
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Statistical Results as Hypothesis Tests
Usual HEP results can be recast in terms of hypothesis testing:

• Discovery: is the data compatible with background-only ?
→ H0 : only background is present
→ How well can we reject H0 ? → p-value (signifcance)

• Upper limits: no excess observed – how small must the signal be ?
→ H0(S) : B + some signal S
→ How small can we make S, and still reject H0(S) at 95% C.L. (p-value=5%) ?

• Parameter measurement
→ H0(μ): some parameter value μ
→ What values μ are not rejected at 68% C.L. (p=32%) ? 
Þ 1σ confdence interval on μ

In all cases, H0 : null hypothesis – what we are trying to disprove
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Computing Statistical Results
III. Discovery

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011
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Discovery: Test Statistic
Discovery :
• H0 : background only (S = 0) against
• H1: presence of a signal (S ≠ 0)
→ For H1, any S≠0 is possible, which to use ? The one preferred by the data, Ŝ.

Þ Use LR

→ In fact use the test statistic

→ t0 is computed from the observed data – ft to data to get S.
→ t0 always ≥ 0, t0 = 0 reached for S = 0.
→ t0 measures the relative likelihood of H1 vs. H0 in data:

t0 =−2 log
L(S=0)

L( Ŝ)

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

L(S=0)

L( Ŝ)

Large values of t0  large observed S⇔

https://arxiv.org/abs/1007.1727
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Discovery p-value

Large values of

 ⇒ large observed S
 ⇒ H0(S=0) disfavored compared to H1(S≠0).

How large t0 before we can exclude H0 ? 
(and claim a discovery!)

p-value : Fraction of outcomes that are at 
                least as H1-like (signal-like) as data, 
                when H0 is true (no signal present).

→ Smaller p-value  Stronger case for discovery⇒

→ Compute from distribution f(t0|H0) of t0 if H0 is true:

t 0=−2 log
L(S=0)

L( Ŝ)

S ~ 0

t0

Observed 
value t0

obs

data 
prefer 

H0

data 
prefer

H1

f(t0|H0) 

p0 =ò
t0

obs

∞

f ( t 0∣H0) dt0

S  σ≫ S

https://arxiv.org/abs/1007.1727
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Discovery signifcance

In ROOT:
p0 → Z   (Φ)   : ROOT::Math::gaussian_quantile_c
Z → p0   (Φ-1) : ROOT::Math::gaussian_cdf_c

 ⇒ How small is small enough ? 
→ Conventionally, discovery for  p0=  6 10-7    Z = 5σ⇔

Z p-value

1 0.32
2 0.045
3 0.003
5 6 x 10-7

Interesting p-values are quite small 
 express in terms of Gaussian quantiles⇒

→ Signifcance Z

p0 = 1 −ò
−Z

+Z
1

√2π
e−u2

/2du

= 1 − 2 Φ(Z )

Φ(Z)=ò
−∞

Z

G (u ;0,1)du
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Asymptotic Approximation
→ Assume Gaussian regime for Ŝ (e.g. large nevts)  Central-limit theorem : ⇒

Þ t0 is distributed as a χ2 under the hypothesis H0

In particular, signifcance:

Typically works well for for event counts O(5) 
and above (5 already “large”...)

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √ t0

f ( t0 ∣H0 ) = f
χ

2
(ndof=1) ( t0 )

μ ~ 0

μ≫sμ

fχ2,ndof=1(t0) 

The 1-line “proof” : asymptotically L and S are Gaussian, so

t 0=−2 log
L(S=0)

L( Ŝ)

By defnition,
  t0 ~ χ2  √t⇒ 0 ~ G(0,1)

L(S) = exp [− 1
2

( S− Ŝ
s )

2

] ⇒ t0= ( Ŝs )
2

⇒ t0 ∼ χ
2
(ndof=1)  since Ŝ∼ G (0,s )

t0
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One-sided vs. Two-Sided 
If Ŝ < 0, is it a discovery ? (does reject the S=0 hypothesis…)
Usual assumption : only Ŝ > 0 is a bona fde signal

 ⇒ Change statistic so that Ŝ < 0  Þ t0 = 0 (perfect agreement with H0, as for S = 0)

H1

μ=0

H0

Two-sided One-sided

t 0 =−2 log
L(S=0)

L( Ŝ)
q0 = {−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

μ=0

H0H1 H1

Z = Φ
−1
(1− p0)Z = Φ

−1
(1−

p0

2
)

p0 Z p0

0.32 1 0.16

0.003 3 0.0015

6 x 10-7 5 3 x 10-7

By convention, factor 2 
in p-values for a given Z

 ⇒ Same Z in both cases 
for a given signal S

Test
Statistic

https://arxiv.org/abs/1007.1727
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One-Sided Asymptotics
→ One-sided test: 

Asymptotics: “half-χ2” distribution:

S=0
H0

H1

f (q0 ∣ S=0) =
1
2
δ (q0) +

1
2
f
χ

2
(ndof=1)(q0)

Z = Φ
−1
(1− p0) = √ q0Signifcance:p0 = 1−Φ (√ q0)Discovery p-value:

q0= ( μ̂sμ )
2

μ̂
sμ

Φ  : normal CDF

1−Φ ( μ̂sμ )

q0 = {−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

Φ( z)=ò
−∞

z

G(u ;0,1)du
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Example: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

MLE for S : Ŝ = n –  B

Test statistic: assume S > 0,

Finally: 

L(S ;n) = e
−

1
2 (

n−(S+B)

√S+B )
2

S+B

√(S+B)
n

q0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ

√B )
2

Z = √ q0 =
Ŝ

√B

λ (S ;n) = (
n−(S+B)

√S+B )
2

Known formula!
→ Strictly speaking only 
valid in Gaussian regimge
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Example: Poisson Counting
Same problem but now not assuming Gaussianity

MLE: Ŝ = n –  B, same as Gaussian

Test statistic (for S > 0):

Assuming asymptotic distribution for q0,

Exact result can be obtained using
pseudo-experiments → close to √q0 result

L(S ;n) = e−(S+ B)
(S+B)n λ (S ;n) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justifed by Gaussian
regime, but remain valid even for small 

values of S+B (5!)
See G. Cowan’s slides for case with B uncertainty

Eur.Phys.J.C71:1554,2011
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Example: Multi-bin counting
Likelihood :

Assume Gaussianity:

Test statistic: assuming S > 0,

Asymptotics: 

L(S ;n) =∏
i=1

N

Pois (ni ; S f i+Bi)

λ (S) =∑
i=1

N

(
ni − (S f i + Bi)

√Sf i + Bi
)

2

q0 = λ(S=0) − λ ( Ŝ) = ( Ŝ √ ∑i=1

N f i
2

Bi
)

2

Z = √ q0 =
Ŝ

( ∑i=1

N f i
2

Bi
)
−1 /2

Ŝ=

∑
i=1

N

f i
ni−Bi

Bi

∑
i=1

N f i
2

Bi

Always better than
● Any bin by itself (for same S)
● All bins merged together Combined uncertainty 

on S from all the bins

http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727
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Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

Z
=
Φ

−
1(1

−
p

0 )
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Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

Z
=
Φ

−
1(1

−
p

0 )

Uncapped q0:

q0 = {
−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

+2 log
L(S=0)

L( Ŝ)
Ŝ < 0

http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X
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Takeaways
Given a statistical model P(data; μ), defne likelihood L(μ) = P(data; μ)

To estimate a parameter, use value μ ̂that maximizes L(μ).

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets, 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 = {−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X
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What was the question ?
Defnition of the p-value:

So 5σ signifcance (p0~10-7)  ⇔ Occurs once in107 if only background present

However this is NOT “One chance in 107 to be a fuctuation”

The frst statement is about data probabilities – P(data; H0)

The second is on P(H0) itself – not addressed in the framework described so far
→ makes sense in a Bayesian context, more on this tomorrow.

It’s also a diferent statement (although they sometimes get confused)
→ If a signal outcome is also very unlikely, we may not want to 
     reject H0, even with p0 ~ 10-7.

p-value =
number of signal-like outcomes with only background present

all outcomes with only background present
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What was the question ?
e.g. Faster-than-light neutrino anomaly

“despite the large signifcance of the measurement reported 
here and the stability of the analysis, the potentially great impact 
of the result motivates the continuation of our studies in order to 
investigate possible still unknown systematic efects that could 
explain the observed anomaly.”

P ( fluctuation) =
number of signal-like outcomes with only B present

number of signal-like outcomes from any source (S or B)

 ⇒ Very unlikely to be a background fuctuation, but 
hard to believe since alternative (v>c) is far-fetched

Alternative:

→ Needs a priori P(S) and P(B) → Bayesian methods, discussed tomorrow
→ In frequentist context, only have p0 = P(fuct|B)  [and P(fuct|S) = power ~ 1)

 ⇒ However usually same conclusion, assuming P(S) is not  p≪ 0...

6.2σ above c

c

=
P ( fluct∣B) P (B)

P ( fluct∣S)P (S) + P ( fluct∣B) P (B)

“Extraordinary claims 
require extraordinary 
evidence”

http://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html?pagewanted=all
https://understandinguncertainty.org/explaining-5-sigma-higgs-how-well-did-they-do
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