Statistical analysis methods in High-Energy Physics

Part I

Nicolas Berger (LAPP)

Introduction

Data

ATLAS

Introduction

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Uncertainties

Many important questions answered by **precision measurements**, especially if no new peaks found at high mass...

Key point = determination of uncertainties

Consistency of the SM...

... or the fate of the universe

Overview

Topics covered:

- Computing statistics results
- Interpreting statistical results
- Understanding the measurement process (what is a systematic ?)

Prerequisites:

- Some background in High energy physics
- Some basic knowledge of statistics but will review the basics.

I will mostly use the "physics" names of statistical quantities, rather than those used in the statistics community ("significance" and not "size of a test", etc.)

Much of the discussion and examples have an ATLAS/CMS/LHC slant due to my limited experience... But hopefully the concepts should be generally applicable.

Books and Courses

Some courses available online:

Glen Cowan's Cours d'Hiver and 2010 CERN Academic Training lectures Kyle Cranmer's CERN Academic Training lectures Louis Lyons'and Lorenzo Moneta's CERN Academic Training Lectures

Outline

Statistics basics for HEP

Random processes Probability distributions

Describing HEP measurements

Computing statistics results

Likelihoods

Estimating parameter values

Testing hypotheses

Computing discovery significance

Tomorrow: Limits, look-elsewhere effect, Profiling, Bayesian methods **Wednesday**: Practical modeling, Unfolding

Random Processes

Random Processes

Statistics is the description of **random** processes. Where does this come into HEP ?

Measurement errors

Quantum Randomness

Randomness in High-Energy Physics

Collider data is produced by incredibly complex processes

Randomness in High-Energy Physics

Collider data is produced by incredibly complex processes

Randomness involved in all stages

- \rightarrow **Classical** randomness: detector reponse
- \rightarrow Quantum effects in production, decay

Hard scattering

PDFs, Parton shower, Pileup

Decays

Detector response

Reconstruction

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event ⇒ **Random process** ⇒ **Need a probabilistic description**

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event ⇒ **Random process** ⇒ **Need a probabilistic description**

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event \Rightarrow **Random process**

\Rightarrow Need a probabilistic description

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event \Rightarrow **Random process**

\Rightarrow Need a probabilistic description

Quantum Randomness: H→ZZ*→4I

Quantum Randomness: H→ZZ*→4I

Rare process: Expect 1 signal event every ~6 days

View online

Quantum Randomness: H→ZZ*→4I

Quantum randomness: "Will I get an event today ?" \rightarrow only probabilistic answer

Randomness in High-Energy Physics

Questions with probabilistic answers:

 Is my Higgs-like excess just a background fluctuation?

 \rightarrow associated with prob ~10⁻⁹ (by now ~10⁻²⁴)

 \Rightarrow above the famous (and conventional) 5σ

 For measurements: probability that the true value of a parameter is within an interval:

Randomness in High-Energy Physics

Particularly important for New physics searches:

- → Robust methods needed to control spurious "discoveries"...
- \rightarrow ... and accurately **report the significance of excesses** in case of surprises

Example Analyses

Example 1: Z \rightarrow ee Inclusive σ^{fid}

Measurement Principle:

Signal events	$34865 \pm 187 \pm 7 \pm 3$
Correction <i>C</i>	$0.552 \substack{+0.006 \\ -0.005}$
$\sigma^{ m fid}[m nb]$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$

Phys. Lett. B 759 (2016) 601

Simple uncertainty propagation:

 $\sigma^{\text{fid}} = 0.781 \pm 0.004$ (stat) ± 0.008 (syst) ± 0.016 (lumi) nb

→ Simplest possible example in several ways

- "Single bin counting" : only data input is N_{data}
- Here Gaussian assumptions

Example 2: ttH→bb

arXiv:1712.008895

Event counting in different regions: *Multiple-bin counting*

Lots of information available

 \rightarrow How to make optimal use of it ?

Goals:

- \rightarrow discovery significance,
- $\rightarrow \sigma \times BR$ measurement

Example 3: Unbinned shape analysis

Describe spectrum without discrete binning → use smooth functions of a continuous variable.

Unbinned shape analysis

How to describe the shapes ?

Goals:

- → Discovery significance
- $\rightarrow \sigma \times BR$ measurements
- \rightarrow Upper limits.

Short reminder on Probability Distribution functions (PDFs)

Probabilistic treatment of possible outcomes ⇒ *Probability Distribution*

Example: two-coin toss

 → Fractions of events in each bin i converge to a limit p_i

 Probability distribution :

 $\{ P_i \}$ for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ *Probability Distribution*

Example: two-coin toss \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution : { P_i } for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ Probability Distribution

Example: two-coin toss \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution : $\{P_i\}$ for i = 0, 1, 2

Properties

- $P_i > 0$
- Σ P_i=1

100 trials

Probabilistic treatment of possible outcomes ⇒ *Probability Distribution*

100000 trials **Example**: two-coin toss 50000 \rightarrow Fractions of events in each bin i converge to a limit p_i 40000 30000 **Probability distribution** : 20000 $\{P_i\}$ for i = 0, 1, 2 10000 0.25 0<u>L</u> **Properties** 0.5 1 • $P_i > 0$ • ΣP_i=1

0.50

1.5

2

0.25

2.5

Number of heads

3

Continuous variable: can consider **per-bin** probabilities p_i , i=1.. n_{bins}

Bin size \rightarrow 0 : Probability distribution function P(x)

 \rightarrow High values \Leftrightarrow high chance to get a measurement here

 $\rightarrow P(x) > 0$

 $\rightarrow \int P(x) dx = 1$

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Bin size \rightarrow 0 : Probability distribution function P(x)

 \rightarrow High values \Leftrightarrow high chance to get a measurement here

 $\rightarrow P(x) > 0$

 $\rightarrow \int P(x) dx = 1$

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Bin size \rightarrow 0 : Probability distribution function P(x)

→ High values \Leftrightarrow high chance to get a measurement here → P(x) > 0

 $\rightarrow \int P(x) dx = 1$

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Bin size \rightarrow 0 : Probability distribution function P(x)

- \rightarrow High values \Leftrightarrow high chance to get a measurement here
- $\rightarrow P(x) > 0$
- $\rightarrow \int P(x) dx = 1$

PDF Properties: Mean

E(x) = <x> : Mean of x – expected outcome on average over many measurements

$$\langle x \rangle = \sum_{i} x_{i} P_{i}$$
 or
 $\langle x \rangle = \int x P(x) dx$

 \rightarrow Property of the **PDF**

For measurements $x_1 \dots x_n$, then can compute the **Sample mean**:

$$\overline{x} = \frac{1}{n} \sum_{i} x_{i}$$

- \rightarrow Property of the **sample**
- \rightarrow approximates the PDF mean.

-2

-1

0

-3

2

3

PDF Properties: Variance

Variance of x:

 $\operatorname{Var}(x) = \langle (x - \langle x \rangle)^2 \rangle$

 \rightarrow Average square of deviation from mean

 \rightarrow RMS(x) = $\sqrt{Var(x)} = \sigma_x$ standard deviation

Can be approximated by **sample variance**:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of x and y:

$$\operatorname{Cov}(x) = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$$

- \rightarrow Large if variations of x, y are "synchronized"
- Cov(x, y) > 0 if x and y vary in the same direction
- Cov(x, y) < 0 if x and y vary in opposite direction
- Cov(x, y) = 0 if x and y vary independently

PDF Properties: Variance

Variance of x:

 $\operatorname{Var}(x) = \langle (x - \langle x \rangle)^2 \rangle$

 \rightarrow Average square of deviation from mean

 \rightarrow RMS(x) = $\sqrt{Var(x)} = \sigma_x$ standard deviation

Can be approximated by **sample variance**:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of x and y:

$$\operatorname{Cov}(x) = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$$

- \rightarrow Large if variations of x, y are "synchronized"
- Cov(x, y) > 0 if x and y vary in the same direction
- Cov(x, y) < 0 if x and y vary in opposite direction
- Cov(x, y) = 0 if x and y vary independently

Χ

Correlation coefficient $\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)\operatorname{Var}(y)}$

PDF Properties: Variance

Variance of x:

 $\operatorname{Var}(x) = \langle (x - \langle x \rangle)^2 \rangle$

 \rightarrow Average square of deviation from mean

 \rightarrow RMS(x) = $\sqrt{Var(x)} = \sigma_x$ standard deviation

Can be approximated by **sample variance**:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of x and y:

$$\operatorname{Cov}(x) = \langle (x - \langle x \rangle) (y - \langle y \rangle) \rangle$$

- \rightarrow Large if variations of x, y are "synchronized"
- Cov(x, y) > 0 if x and y vary in the same direction
- Cov(x, y) < 0 if x and y vary in opposite direction
- Cov(x, y) = 0 if x and y vary independently

Gaussian PDF

Gaussian distribution:

$$G(x; X_0, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-X_0)^2}{2\sigma^2}}$$

- \rightarrow Mean : X₀
- → Variance : σ^2 (⇒ RMS = σ)

$$G(x; X_0, C) = \frac{1}{(2\pi |C|)^{N/2}} e^{-\frac{1}{2}(x-X_0)^T C^{-1}(x-X_0)}$$

Generalize to N dimensions: \rightarrow Mean : X₀

→ Covariance matrix :

$$C = \begin{bmatrix} \operatorname{Var}(x_1) & \operatorname{Cov}(x_1, x_2) \\ \operatorname{Cov}(x_2, x_1) & \operatorname{Var}(x_2) \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{x_1}^2 & \gamma \sigma_{x_1} \sigma_{x_2} \\ \gamma \sigma_{x_1} \sigma_{x_2} & \sigma_{x_2}^2 \end{bmatrix}$$

Central Limit Theorem

(*) Assuming σ_x < ∞
 and other regularity
 conditions

For an observable X with **any distribution**, one has(*)

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \stackrel{n \to \infty}{\sim} G(\langle X \rangle, \frac{\sigma_X}{\sqrt{n}})$$

What this means:

- The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The RMS of the Gaussian decreases as \sqrt{n} : less fluctuations when averaging over many measurements

Another version, for the sum:

$$\sum_{i=1}^{n} x_i \stackrel{n \to \infty}{\sim} G(n \langle x \rangle, \sqrt{n} \sigma_x)$$

Mean scales like n, but RMS only like \sqrt{n}

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Draw events from a x^2 distribution (for illustration only)

Outline

Statistics basics for HEP Random processes Probability distributions

Describing HEP measurements

Computing statistics results Likelihoods Estimating parameter values Testing hypotheses Computing discovery significance

Describing HEP measurements

Statistical Model

Goal:

Describe the random process by which the data was obtained.

→ Build a **Statistical Model**

Ingredients:

- Statistical description of the random aspects
 ⇒ Probability distributions
- Assumptions on the underlying statistical processes (physics, etc.)
 → Uncertainties on the assumptions themselves: systematic uncertainties

"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

Statistical results can only be as accurate as the model itself !

Counting events

Consider N total events, select *good* events with probability P. Probability to get **n good events** ?

However suppose $P\ll 1,\,N\gg 1$, and let λ = $N\cdot P$:

→ *i.e.* very rare process, but very many trials so still expect to see good events

Poisson distribution:
$$P(n; \lambda) = e^{-\lambda} \frac{\lambda^n}{n!}$$

Mean = λ
Variance = $\lambda \Rightarrow \text{RMS} = \sqrt{\lambda}$
 \uparrow
 $(1-P)^{N-n} \stackrel{n \ll N}{\sim} (1-\frac{\lambda}{N})^N \stackrel{N \gg 1}{\sim} e^{-\lambda}$

Uncertainty of \sqrt{N} on N expected events

Rare Processes ?

HEP : almost always use Poisson distributions. Why ?

ATLAS :

- Event rate ~ 1 GHz (L~10³⁴ cm⁻²s⁻¹~10 nb⁻¹/s, σ_{tot} ~10⁸ nb,)
- Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

⇒ **P** ~ 10⁻⁶ ≪ 1 (
$$P_{H \to \gamma \gamma}$$
 ~ 10⁻¹³)

A day of data: $N \sim 10^{14} \gg 1$ \Rightarrow Poisson regime!

(Large N = design requirement, to get not-too-small λ =NP...)

- Discrete distribution (integers only), asymmetric for small λ
- Typical variation (RMS) of n events is \sqrt{n}
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

- Discrete distribution (integers only), asymmetric for small λ
- Typical variation (RMS) of n events is \sqrt{n}
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

- Discrete distribution (integers only), asymmetric for small λ
- Typical variation (RMS) of n events is \sqrt{n}
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

- Discrete distribution (integers only), asymmetric for small λ
- Typical variation (RMS) of n events is \sqrt{n}
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

- Discrete distribution (integers only), asymmetric for small λ
- Typical variation (RMS) of n events is \sqrt{n}
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

- Discrete distribution (integers only), asymmetric for small λ
- Typical variation (RMS) of n events is \sqrt{n}
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

Statistical Model for Counting

Counting experiment:

observable: a number of events n \rightarrow describe by a Poisson distribution

$$P(n;\lambda) = e^{-\lambda} \frac{\lambda^n}{n!}$$

Typically both signal and background expected:

$$P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$$

S: # of events from signal process
B: # of events from bkg. process(es)

We have **assumed** a Poisson distribution for n : This is our model, based on physics knowledge (but usually a very safe one).

Model has **parameters S** and **B**. B can be known a priori or not (S usually not...) \rightarrow Example: can **assume B is known**, use the **measured n** to find out about the **parameter S**.

usually up to uncertainties \rightarrow systematics

$\textbf{Z} {\rightarrow} \textbf{ee Inclusive } \sigma^{\text{fid}}$

Measurement Principle:

Signal events	$34865 \pm 187 \pm 7 \pm 3$
Correction <i>C</i>	$0.552 \substack{+0.006 \\ -0.005}$
$\sigma^{ m fid}[m nb]$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$

Phys. Lett. B 759 (2016) 601

Simple uncertainty propagation:

 $\sigma^{\text{fid}} = 0.781 \pm 0.004$ (stat) ± 0.008 (syst) ± 0.016 (lumi) nb

→ Simplest possible example in several ways

- "Single bin counting" : only data input is N_{data}.
- Describe using Poisson distribution, or Gaussian for large n_{data}

Unbinned Shape Analysis

Observable: set of values **m**₁... **m**_n, one per event

- \rightarrow Describe shape of the **distribution of m**
- \rightarrow Deduce the **probability to observe m**₁... m_n 110 120 130 140 150 160 m (GeV)
 Normalized events
 0.025

 0.025
 0.025

 0.015
 0.015

 0.005
 0.005
 $H \rightarrow \gamma \gamma$ -inspired example: slopę α Gaussian signal $P_{\text{signal}}(m) = G(m; m_H, \sigma)$ Exponential bkg $P_{\rm bkg}(m) = \alpha e^{-\alpha m}$ Background Expected yields : **S**, **B** 100 110 120 130 140 150 160 \Rightarrow Total PDF for a single event: m (GeV)) + $\frac{B}{S+B} \alpha e^{-\alpha m}$ Probability to observe 0.005 $P_{\text{total}}(m) = \frac{S}{S+B}G(m;m_H,\sigma) + \frac{B}{S+B}\alpha e^{-\alpha m}$ \Rightarrow Total PDF for a dataset Total the value m_i 100 110 120 130 Probability to observe n events 140 150 160 m (GeV) $P(\{m_i\}_{i=1...n}) = e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} G(m_i; m_H, \sigma) + \frac{B}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} \frac{S}{S+B} \alpha e^{-(S+B)} \frac{(S+B)^n}{n!} \prod_{i=1}^n \frac{S}{S+B} \alpha e^{-(S+B)} \prod$ 63

Vormalized events per GeV

0.25

0.2

0.15

0.1

0.05

m

Signal

σ

Н→үү

ATLAS-CONF-2017-045

The Halfway Option: Binned Shape Analysis

Instead of using $m_1 \dots m_n$ directly, can build a histogram $n_1 \dots n_N$. \rightarrow N : number of bins Per-bin fractions (=shapes) of Signal and Background Events / bi Data ATLAS 600 ⊡tt + light <u></u>tt̄ + ≥1c $\sqrt{s} = 13 \text{ TeV}$. 36.1 fb⁻¹ tt + ≥1b $\blacksquare t\bar{t} + V$ Dilepton 500 Non-tt Total unc. SR^{≥4j} ttH (norm) Post-Fit 400 $P(\{n_{i}\}; S, B) = \prod_{i=1}^{N} e^{-(Sf_{S,i}+Bf_{B,i})} \frac{(Sf_{S,i}+Bf_{B,i})^{n_{i}}}{n_{i}!}$ 300 200 i=1100 Data / Pred 1.25 Poisson distribution in each bin 0.75 0.5 -0.8 -0.6 -0.4 -0.2 0 0.2 Classification BDT output

N=1: Counting analysis

 $N \rightarrow \infty$: Unbinned shape analysis (the fractions become PDF values)

Shapes specified through $f_{s,i}$, $f_{B,i}$ rather than $P_{signal}(m)$, $P_{bkg}(m)$

- Obtained directly from MC, no need to define continuous PDFs.
- Θ MC stat fluctuations can create artefacts, especially for S \ll B.
- \rightarrow discussed in more detail on Wednesday

Summary: How to describe data

Description	Observable	Likelihood
Counting	n : measured number of events	Poisson $P(\mathbf{n}; \mathbf{S}, \mathbf{B}) = e^{-(\mathbf{S} + \mathbf{B})} \frac{(\mathbf{S} + \mathbf{B})^n}{n!}$
		S, B : expected signal & background
Binned shape	n _i , i=1N _{bins} :	Poisson product
analysis r	measured events in each bin.	$P(\boldsymbol{n_i}; \boldsymbol{S}, \boldsymbol{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\boldsymbol{S} f_i^{\text{sig}} + \boldsymbol{B} f_i^{\text{bkg}})} \frac{(\boldsymbol{S} f_i^{\text{sig}} + \boldsymbol{B} f_i^{\text{bkg}})^{\boldsymbol{n_i}}}{\boldsymbol{n_i}!}$
		S , B : expected signal & background
Unbinned shape analysis	m _i , i=1 n _{evts} :	Extended Unbinned Likelihood
of for the structure of	observable value for each event $P($	$\boldsymbol{m}_{i}; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n}_{\text{evts}}!} \prod_{i=1}^{\boldsymbol{n}_{\text{evts}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m}_{i}) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m}_{i})$
		S , B : expected signal & background
		P _{sig} , P _{bkg} : PDFs for m in signal and bkg. 66

66

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure \rightarrow S, $\sigma \times B$, m_w , ...
- Nuisance parameters (NPs) : other parameters needed to define the model $\rightarrow B$
 - \rightarrow For binned data, f^{sig}_{i} , f^{bkg}_{i}
 - → For unbinned data, parameters needed ^L to define P_{bkg} *e.g.* exponential slope α of H→µµ background.

NPs must be either

- → known a priori (possibly within systematics) or
- → constrained by the data (e.g. in sidebands)

Phys. Rev. Lett. 119 (2017) 051802 67

Categories

Multiple analysis regions often used:

- Multiple decay modes
- Multiple kinematic selections, etc.
- \rightarrow Useful to model these separately if
- Better sensitivity in some regions (avoids dilution)
- Some regions can constrain NPs
 - e.g. *Control regions* for backgrounds

 \Rightarrow Analysis categories : PDF for category k

$$P(S; \{n_i^{(k)}\}_{i=1...n_{\text{evts}}}^{k=1...n_{\text{cats}}}) = \prod_{k=1}^{n_{\text{cats}}} P_k(S; \{n_i^{(k)}\}_{i=1...n_{\text{evts}}}^{(k)})$$

No overlaps between categories \Rightarrow No stat. correlations Data \Rightarrow can simply take product of PDFs.

 \rightarrow Similar to a-posteriori combination of the various regions, but allows proper handling of correlated parameters (e.g. systematics).

Events / bir

 10^{7}

10

10^t

10

 10^{3}

 10^{2}

Data / Pred 1.25

0.75 0.5

68

Categories for $H \rightarrow \gamma \gamma$ Property Measurements

Categories also useful to provide measurements of separate kinematic regions \rightarrow e.g. differential cross-section measurements

Most categories aimed at one particular truth region

- \rightarrow also cross-feed from other regions (detector acceptance, pileup, etc.)
- ⇒ Combined analysis for optimal use of all information

Model Example: $H \rightarrow \gamma \gamma$ Discovery Analysis

ATLAS Higgs Combination Model

parameters)

Atlas Higgs combination model (23.000 functions, 1600

CAMIN

Model has ~23.000 function objects, ~1600 parameters Reading/writing of full model takes ~4 seconds ROOT file with workspace is ~6 Mb

W. Verkerke, SOS 2014

F(x,p)

Technical Implementation

Implemented in **ROOT** using the **RooFit/RooStats/HistFactory** toolkits

- **C++ classes** for PDFs, formulas, variables, etc.
- Numerical methods: convolutions, automatic computation of normalization factors. Analytical evaluation used when possible
- Template morphing

• Storage in **RooWorkspace** structures within ROOT files

→ Standard tools in LHC experiments, used in similar ways in ATLAS and CMS Realistic models can be quite complex: ATLAS+CMS Higgs couplings comb. :

- 20 POIs, 4200 parameters, 600 categories
- > 7 GB memory footprint
- Time for 1 MINUIT fit ~ O(few hours)

Takeaways

HEP data is produced through **random processes**, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n}_i; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S}f_i^{\text{sig}} + \mathbf{B}f_i^{\text{bkg}})} \frac{(\mathbf{S}f_i^{\text{sig}} + \mathbf{B}f_i^{\text{bkg}})^{\mathbf{n}_i}}{\mathbf{n}_i!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\boldsymbol{m_i}; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n_{\text{evts}}}!} \prod_{i=1}^{\boldsymbol{n_{\text{evts}}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m_i}) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m_i})$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs) **Next step**: use the model to obtain information on the POIs
Outline

Statistics basics for HEP

Random processes Probability distributions

Describing HEP measurements

Computing statistics results

Likelihoods Estimating parameter values Testing hypotheses Computing discovery significance

Computing Statistical Results

Cowan, Cranmer, Gross & Vitells, Eur. Phys. J. C71:1554,2011

Overview

What we have so far:

- Observed data
- Statistical model : P(data; parameters) description of the random process producing the data \rightarrow includes parameters that we want to measure (S, $\sigma \times B$, m_w , ...)

What we want : Statistical Results

- **Parameter measurement**: $x_0 \pm$ uncertainty
- Upper limits on signal yields, etc.
- Discovery significance

Computing Statistical Results I. Parameter Estimation

Using the PDF

Model describes the distribution of the observable: **P(data; parameters)** ⇒ Possible outcomes of the experiment, for given parameter values Can draw random events according to PDF : **generate** *pseudo-data*

Likelihood

Model describes the distribution of the observable: $P(n; \lambda)$, P(data; parameters) \Rightarrow Possible outcomes of the experiment, for given parameter values We want the **other** direction: **use data to get information on parameters**

Likelihood: L(parameters) = P(data;parameters)

 \rightarrow same as the PDF, but seen as function of the parameters

Assume **Poisson distribution** with B = 0:

$$P(n; \mathbf{S}) = e^{-s} \frac{S^n}{n!}$$

 $L(S; n=5) = e^{-S} \frac{S^{3}}{5!}$

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

Assume **Poisson distribution** with B = 0:

$$P(n; \mathbf{S}) = e^{-s} \frac{S^n}{n!}$$

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

Assume **Poisson distribution** with B = 0:

$$P(n;S) = e^{-S} \frac{S^n}{n!}$$

 $L(S; n=5) = e^{-S} \frac{S^{3}}{5!}$

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

Assume **Poisson distribution** with B = 0:

$$P(n; \mathbf{S}) = e^{-s} \frac{S^n}{n!}$$

 $L(S; n=5) = e^{-S} \frac{S^{5}}{5!}$

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

Assume **Poisson distribution** with B = 0:

 $P(n;S) = e^{-S} \frac{S^n}{n!}$

 $L(S; n=5) = e^{-S} \frac{S^{3}}{5!}$

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

Maximum Likelihood Estimation

Estimate a parameter μ : Find the value that maximizes $L(\mu)$ \Rightarrow the value of μ for which this data was most likely to occur \rightarrow Maximum Likelihood Estimator, $\hat{\mu}$ $\hat{\mu} = arg max L(\mu)$

The MLE is a function of the data - itself an observable

No guarantee it is the true value (data may be "unlikely") but sensible estimate

MLEs in Shape Analyses

Binned shape analysis:

$$L(\mathbf{S};\mathbf{n}_i) = P(\mathbf{n}_i;\mathbf{S}) = \prod_{i=1}^N \operatorname{Pois}(\mathbf{n}_i;\mathbf{S}f_i + B_i)$$

Need to maximize L(S) : in practice easier to minimize

$$\lambda_{\text{Pois}}(\mathbf{S}) = -2\log L(\mathbf{S}) = -2\sum_{i=1}^{N} \log \text{Pois}(\mathbf{n}_i; \mathbf{S}f_i + B_i)$$

Or in the Gaussian limit

$$\lambda_{\text{Gaus}}(\mathbf{S}) = \sum_{i=1}^{N} -2\log G(\mathbf{n}_i; \mathbf{S}f_i + B_i, \sigma_i) = \sum_{i=1}^{N} \left| \frac{\mathbf{n}_i - (\mathbf{S}f_i + B_i)}{\sigma_i} \right|^2 \quad \chi^2 \text{ formulal}$$

→ Gaussian MLE (min χ^2 or min λ_{Gaus}): same *Best fit value* in a χ^2 fit → Poisson MLE (min λ_{Pois}): *Best fit value* in a *likelihood* fit (in ROOT, fit option "L") In RooFit, λ_{Pois} → RooAbsPdf::fitTo(), λ_{Gaus} → RooAbsPdf::chi2FitTo().

In both cases, MLE ⇔ Best Fit

C

Н→үү

MLE Properties

- Consistent: $\hat{\mu}$ converges to the true value for large n, $\hat{\mu} \stackrel{n \to \infty}{\to} \mu^*$
- Asymptotically Gaussian :
 for large datasets

$$P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu} - \mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right) \quad \text{for } n \to \infty$$

Standard deviation of the distribution of $\hat{\mu}$

Asymptotically Efficient : σ_µ is the lowest possible value (in the limit n→∞) among consistent estimators.
 → MLE captures all the available information in the data

- **Log-likelihood** : Can also minimize $\lambda = -2 \log L$
 - \rightarrow Usually more efficient numerically
 - \rightarrow For Gaussian L, λ is parabolic:

$$^{\vee}\lambda(\mu) = \left(\frac{\hat{\mu}-\mu}{\sigma_{\mu}}\right)^{2}$$

• Can drop multiplicative constants in L (additive constants in λ)

Fisher Information

Fisher Information:

$$I(\mu) = \left| \left| \frac{\partial}{\partial \mu} \log L(\mu) \right|^2 \right| = - \left| \frac{\partial^2}{\partial \mu^2} \log L(\mu) \right|$$

Measures the **amount of information** available in the measurement of μ .

Gaussian likelihood:
$$I(\mu) = \frac{1}{\sigma_{\text{Likelihood}}^2}$$

 \rightarrow smaller $\sigma_{\text{Likelihood}} \Rightarrow$ more information.

Cramer-Rao bound:

For any estimator µ,

$$\operatorname{Var}(\hat{\mu}) \geq \frac{1}{I(\mu)}$$

Gaussian: for any estimator $\hat{\mu}$ with $P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu}-\mu^{*})^{2}}{2\sigma_{\hat{\mu}}^{2}}\right)$ $Var(\hat{\mu}) = \sigma_{\hat{\mu}}^{2}$ $\sigma_{\hat{\mu}}^{2} \ge \sigma_{\text{Likelihood}}^{2} = \sigma_{\text{MLE}}^{2}$

 \rightarrow cannot be more precise than information allows.

Efficient estimators reach the bound : e.g. MLE in the large n limit.

What's next? Usual Statistical Results

We need more than just best-fit values:

 Discovery: we see an excess – is it a (new) signal, or a background fluctuation ?

• Upper limits: we don't see an excess – if there is a signal present, how small must it be ?

 Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?

The Statistical Model already contains all the necessary information – how to use it ?

Computing Statistical Results II. Testing Hypotheses

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H₀: S=0)

 \rightarrow Goal : determine if H₀ is true or false using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)		Data favors H _o (Nothing found)	
H ₀ is false (New physics!)	Discovery!		Missed discovery Type-II error (1 - Power)	
H _o is true (Nothing new)	False discovery claim Type-I error (→ p-value, significance)		No new physics, none found	THE PROPERTY OF THE PROPERTY O
		- · ·		

Stringent discovery criteria ⇒ lower Type-I errors, higher Type-II errors → Goal: test that minimizes Type-II errors for given level of Type-I error.

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H₀: S=0)

 \rightarrow Goal : determine if H₀ is true or false using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)	Data favors H _o (Nothing found)	
H ₀ is false (New physics!)	Discovery!	Missed discovery Type-II error (1 - Power)	
H _o is true (Nothing new)	False discovery claim Type-I error (\rightarrow p-value, significance)	No new physics, none found	

Stringent discovery criteria ⇒ lower Type-I errors, higher Type-II errors → Goal: test that minimizes Type-II errors for given level of Type-I error.

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H_0 and H_1 , the optimal discriminator is the **Likelihood ratio** (LR)

As for MLE, choose the hypothesis that is more likely for the data.

 \rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties \rightarrow Always need an **alternate hypothesis** to test against.

Caveat: Strictly true only for *simple hypotheses* (no free parameters)

 \rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

 $L(\mathbf{H}_1; data)$

 $L(\mathbf{H}_{0}; data)$

Statistical Results as Hypothesis Tests

Usual HEP results can be recast in terms of **hypothesis testing**:

- **Discovery**: is the data compatible with background-only? \rightarrow H₀: only background is present
 - \rightarrow How well can we **reject** H₀? \rightarrow **p-value (significance)**
- Upper limits: no excess observed how small must the signal be ? $\rightarrow H_0(S)$: B + some signal S
 - \rightarrow How small can we make S, and still reject H₀(S) at 95% C.L. (p-value=5%)?

Parameter measurement

- \rightarrow H₀(µ): some parameter value µ
- \rightarrow What values μ are <u>not</u> rejected at 68% C.L. (p=32%) ?
- \Rightarrow 1 σ confidence interval on μ

In all cases, H_0 : *null hypothesis* – what we are trying to disprove

Computing Statistical Results III. Discovery

Cowan, Cranmer, Gross & Vitells, Eur. Phys. J. C71:1554,2011

Discovery: Test Statistic

Discovery:

- H₀: background only (S = 0) against
- H_1 : presence of a signal ($S \neq 0$)
- \rightarrow For H₁, any S≠0 is possible, which to use ? The one preferred by the data, \hat{s} .

 $\Rightarrow \text{Use LR} \quad \frac{L(S=0)}{L(\hat{S})}$

$$\rightarrow \text{ In fact use the test statistic} \quad t_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$

 \rightarrow t₀ is computed from the observed data – fit to data to get \hat{S} .

$$\rightarrow$$
 t₀ **always ≥ 0**, t₀ = 0 reached for $\hat{S} = 0$.

 \rightarrow t₀ measures the relative *likelihood* of H₁ vs. H₀ in data:

Large values of $t_0 \Leftrightarrow$ large observed S

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

97

Discovery p-value

Large values of
$$t_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$$

 \Rightarrow large observed \hat{S}

 \Rightarrow H₀(S=0) *disfavored* compared to H₁(S≠0).

How large t_0 before we can exclude H_0 ? (and claim a discovery!)

p-value: Fraction of outcomes that are **at** least as H,-like (signal-like) as data, when **H**_o is true (no signal present).

 \rightarrow Smaller p-value \Rightarrow Stronger case for discovery

Discovery significance

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

05

-3

-4

-2

Interesting p-values are quite small ⇒ express in terms of Gaussian quantiles

→ Significance Z

$$\Phi(Z) = \int_{-\infty}^{Z} G(u; 0, 1) du$$

Ζ	p-value
1	0.32
2	0.045
3	0.003
5	6 x 10 ⁻⁷

In ROO	и И
$p_0 \rightarrow Z$	(Φ) :ROOT::Math::gaussian_quantile_c
$Z \rightarrow p_0$	(Φ⁻¹):ROOT::Math::gaussian_cdf_c

-1

0

1

2

3

4

5

p(|x-x₀| < 1σ) = 0.682689

 \Rightarrow How small is small enough ?

 \rightarrow Conventionally, discovery for $p_0 = 6 \ 10^{-7} \Leftrightarrow Z = 5\sigma$

Asymptotic Approximation

Cowan, Cranmer, Gross & Vitells Eur.Phys.J.C71:1554,2011

→ Assume **Gaussian regime for Ŝ** (e.g. large n_{evts}) ⇒ Central-limit theorem :

 \Rightarrow **t**₀ is distributed as a χ^2 under the hypothesis H₀

 $f(t_0 \mid H_0) = f_{\chi^2(n_{dof}=1)}(t_0)$

$$\mathbf{Z} = \sqrt{t_0} \qquad \qquad \text{By definition,} \\ \mathbf{t}_0 \sim \chi^2 \Rightarrow \sqrt{t_0} \sim \mathbf{G}(0,1)$$

Typically works well for for event counts O(5) and above (5 already "large"...)

The 1-line "proof": asymptotically L and S are Gaussian, so

$$L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow t_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow t_0 \sim \chi^2(n_{dof} = 1) \text{ since } \hat{S} \sim G(0, \sigma)$$

One-sided vs. Two-Sided

If $\hat{S} < 0$, is it a *discovery*? (does reject the S=0 hypothesis...) Usual assumption : only $\hat{S} > 0$ is a *bona fide* signal

 \Rightarrow Change statistic so that $\hat{\mathbf{S}} < \mathbf{0} \Rightarrow \mathbf{t}_n = \mathbf{0}$ (perfect agreement with H_n , as for $\hat{\mathbf{S}} = 0$)

101

One-Sided Asymptotics

Example: Gaussian Counting

Count number of events n in data

 \rightarrow assume n large enough so process is Gaussian

 $L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^2}$

 \rightarrow assume B is known, measure S

Likelihood :

$$\lambda(S;n) = \left(\frac{n - (S + B)}{\sqrt{S + B}}\right)^2$$

MLE for $S : \hat{S} = n - B$

Test statistic: assume $\hat{S} > 0$,

$$q_0 = -2\log\frac{\boldsymbol{L(S=0)}}{\boldsymbol{L(\hat{S})}} = \lambda(S=0) - \lambda(\hat{S}) = \left|\frac{n-B}{\sqrt{B}}\right|^2 = \left|\frac{\hat{S}}{\sqrt{B}}\right|^2$$

Finally:

$$Z = \sqrt{q_0} = \frac{\hat{S}}{\sqrt{B}}$$

Known formula!

 \rightarrow Strictly speaking only

valid in Gaussian regimge

103

S+B

Example: Poisson Counting

Same problem but now not assuming Gaussianity

- $L(S;n) = e^{-(S+B)}(S+B)^n$ $\lambda(S;n) = 2(S+B) 2n\log(S+B)$
- MLE: $\hat{S} = n B$, same as Gaussian

Test statistic (for
$$\hat{S} > 0$$
): $q_0 = \lambda(S=0) - \lambda(\hat{S}) = -2\hat{S} - 2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$

Assuming asymptotic distribution for q_0 ,

$$Z = \sqrt{2\left[\left(\hat{S} + B\right)\log\left(1 + \frac{\hat{S}}{B}\right) - \hat{S}\right]}$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{q_0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (5!)

See G. Cowan's slides for case with B uncertainty 104

Example: Multi-bin counting

Likelihood :

$$L(S;n) = \prod_{i=1}^{N} \operatorname{Pois}(n_i; Sf_i + B_i)$$

Assume Gaussianity:

$$\lambda(S) = \sum_{i=1}^{N} \left(\frac{n_i - (Sf_i + B_i)}{\sqrt{Sf_i + B_i}} \right)^2$$

$$\hat{S} = \frac{\sum_{i=1}^{N} f_i \frac{n_i - B_i}{B_i}}{\sum_{i=1}^{N} \frac{f_i^2}{B_i}}$$

Test statistic: assuming $\hat{S} > 0$,

$$q_0 = \lambda(S=0) - \lambda(\hat{S}) = \left| \hat{S} \sqrt{\sum_{i=1}^N \frac{f_i^2}{B_i}} \right|^2$$

Asymptotics:

$$Z = \sqrt{q_0} = \frac{\hat{S}}{\left|\sum_{i=1}^{N} \frac{f_i^2}{B_i}\right|^{-1/2}}$$

Combined uncertainty $\longrightarrow \left|\sum_{i=1}^{N} \frac{f_i^2}{B_i}\right|^{-1/2}$
on \hat{S} from all the bins

Always better than

- Any bin by itself (for same Ŝ)
- All bins merged together

Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

High-mass X→ yy Search: JHEP 09 (2016) 1

Some Examples

High-mass X→γγ Search: JHEP 09 (2016) 1

Takeaways

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use value $\hat{\mu}$ that maximizes L(μ).

To decide between hypotheses H_0 and H_1 , use the likelihood ratio $\frac{L(H_0)}{I_1(H_0)}$

To test for **discovery**, use $q_0 = \begin{vmatrix} -2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} \ge 0 \\ 0 & \hat{S} < 0 \end{vmatrix}$

For large enough datasets, $Z = \sqrt{q_0}$

For a **Gaussian** measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a **Poisson** measurement, $Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

T

What was the question ?

Definition of the p-value:

p-value = $\frac{\text{number of signal-like outcomes with only background present}}{\text{all outcomes with only background present}}$

So 5 σ significance ($p_0 \sim 10^{-7}$) \Leftrightarrow Occurs once in 10⁷ if only background present

However this is **NOT** "*One chance in 10⁷ to be a fluctuation*"

The first statement is about **data probabilities** – **P(data; H₀)**

The second is on $P(H_0)$ itself – not addressed in the framework described so far \rightarrow makes sense in a **Bayesian** context, more on this tomorrow.

It's also a different statement (although they sometimes get confused) \rightarrow If a signal outcome is also very unlikely, we may not want to reject H₀, even with p₀ ~ 10⁻⁷.
What was the question ?

e.g. Faster-than-light neutrino anomaly

 $(v-c)/c = (2.37 \pm 0.32 \text{ (stat.)} ^{+0.34}_{-0.24} \text{ (sys.)}) \times 10^{-5}$ 6.20 above c

"despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to investigate possible still unknown systematic effects that could explain the observed anomaly."

⇒ Very unlikely to be a background fluctuation, but hard to believe since alternative (v>c) is far-fetched

"Extraordinary claims require extraordinary evidence"

Alternative: $P(\text{fluctuation}) = \frac{\text{number of signal-like outcomes with only B present}}{\text{number of signal-like outcomes from any source (S or B)}$ $= \frac{P(\text{fluct}|B)P(B)}{P(\text{fluct}|S)P(S) + P(\text{fluct}|B)P(B)}$

 \rightarrow Needs *a priori* P(S) and P(B) \rightarrow Bayesian methods, discussed tomorrow

- \rightarrow In frequentist context, only have $\mathbf{p}_0 = \mathbf{P}(\mathbf{fluct}|\mathbf{B})$ (and $\mathbf{P}(\mathbf{fluct}|\mathbf{S}) = \mathbf{power} \sim 1$)
- \Rightarrow However usually same conclusion, assuming P(S) is not $\ll p_0...$