An almost elementary Higgs Theory and Practice

Daniele Barducci

w/ De Curtis, Redi and Tesi - arXiv:1805.12578

An almost elementary Higgs

1

Two solid results from the LHC

The Higgs has been discovered and it has SM-like properties

 $m_H \sim 125 \text{ GeV}$

 $\delta g/g \sim 10\%$

Trilinear and quartic (?) self-coupling to be tested at future colliders

Daniele Barducci

Two solid results from the LHC

Physics Beyond the Standard Model has not been found

What does this implies for the future?

Daniele Barducci

An almost elementary Higgs

Two directions should be pursued

LHC is sensitive to TeV scale NP with $\mathcal{O}(0.01-1)$ couplings

Natural New Physics is being tested

Effective Field Theory can provide indirect reach to higher NP scales

Relax the naturalness criteria and focus on evidences

Dark Matter

u masses

Baryon asymmetry

Keep exploring this path

Look for NP not related to δm_H^2

This talk

An almost elementary Higgs

Strongly coupled extensions of the SM that do not break EW symmetry

- Vector-Like fermions charged under $\mathcal{G}_{\rm SM}$ and $\mathcal{G}_{\rm NP}$
- $\mathcal{G}_{\mathrm{NP}} \sim SU(N), \ SO(N), \ Sp(N)$ interaction that confines at a scale Λ

Bounds states of the new strong interaction are formed

 $\mathcal{L}_{\rm UV}$ contains - kinetic terms for new gauge and fermion fields - interactions among the fermions

$$\mathcal{L}_{\rm mix} \sim m_{\psi_1} \psi_1^c \psi_1 + m_{\psi_2} \psi_2^c \psi_2 + y H \psi_1 \psi_2^c -$$

Mixing with the Higgs can be present depending on $\psi\,$ SM quantum numbers This mixing has has strong implications for VLC phenomenology

Spectrum of the theory

$$\mathcal{L}_{\text{mix}} \sim m_{\psi_1} \psi_1^c \psi_1 + m_{\psi_2} \psi_2^c \psi_2$$

Accidental symmetries of the UV Lagrangian

i) $\psi_i \to \exp{(i \alpha_i)} \psi_i$ dark species number conservation

$$\mathcal{L}_{\text{mix}} \sim m_{\psi_1} \psi_1^c \psi_1 + m_{\psi_2} \psi_2^c \psi_2 + y H \psi_1 \psi_2^c$$

Accidental symmetries of the UV Lagrangian

i)
$$\psi_i \to \exp{(i\alpha_i)}\psi_i$$
 dark species number conservation
ii) $\psi_i \to \exp{(i\alpha)}\psi_i$ dark baryon number conservation

$$\mathcal{L}_{\text{mix}} \sim m_{\psi_1} \psi_1^c \psi_1 + m_{\psi_2} \psi_2^c \psi_2 + \frac{y H \psi_1 \psi_2^c}{y_2^c}$$

Accidental symmetries of the UV Lagrangian

i) $\psi_i \to \exp(i\alpha_i)\psi_i$ dark species number conservation if y = 0ii) $\psi_i \to \exp(i\alpha)\psi_i$ dark baryon number conservation

Dark Baryon number conservation leads to the stability of the lightest techni-baryon, as for the proton in the SM

- **Dark Species number** leads to the stability of techni-mesons made of 2 different species: this symmetry is broken by Yukawa interactions.

Both bounds states can be Dark Matter candidate. [Antipin et al. 1503.08749]

Techni-hadrons at ~ TeV to be the full observed Dark Matter

Other resonances expected at the same scale, i.e. within the LHC reach

- What kind of phenomenology do we expect?
- What can the LHC say on these type of theories?

For concreteness

- SU(N) gauge theories with \Box VLFs
- VLFs charged only under $\mathcal{G}_{\rm EW}$ Colored guys heavily discussed at ${\it F}^{750}$ time
- VLFs representations that appear in SU(5) GUTs

$$N = (n, 1)_0, \qquad L = (n, 2)_{-\frac{1}{2}}, \qquad V = (n, 3)_0$$

$$\sim \text{Bino} \qquad \sim \text{Higgsino} \qquad \sim \text{Wino}$$

 $\mathscr{L}_{\text{mix}} = y_N H L N^c + \tilde{y}_N H^{\dagger} L^c N + y_V H L V^c + \tilde{y}_V H^{\dagger} L^c V + m_V V V^c + m_L L L^c + m_N N N^c + h.c.$

Scenario with $m_\psi < \Lambda$: QCD like chiral dynamic [For the complementary regimes see 1707.05380]

A set of pNGBs is delivered
$$\begin{array}{rcl}
L \times N^c &=& K_{\alpha} \\
L \times V^c &=& K_{\alpha} + H_{a\alpha}
\end{array}
\qquad \begin{array}{rcl}
V \times V^c &=& \eta + \pi_a + \phi_{ab} \\
L \times L^c &=& \eta + \pi_a
\end{array}$$

The chiral lagrangian describes the confined dynamics

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^{\dagger}] + (g_{\rho}f_{\pi}^3 \operatorname{Tr}[MU] + h.c)$$

Kinetic, mass and yukawa

 $- \frac{N}{16\pi^2 f_{\pi}} \sum_{G_1, G_2} g_{G_1} g_{G_2} \operatorname{Tr}[\pi^a T^a F^{(G_1)} \tilde{F}^{(G_2)}]$

Axial anomaly

$+ \frac{3g_2^2 g_\rho^2 f_\pi^4}{2(4\pi)^2} \sum_{i=1..3} \text{Tr}[UT^i U^{\dagger} T^i]$

Gauge contributions

An almost elementary Higgs

From the mass term

$$y_{\pm} = (y \pm \tilde{y}^*)$$

$$\mathcal{L} \subset -m_K^2 |K|^2 - iy_- g_\rho f^2 (bK^{\dagger}H + h.c.) + y_+ g_\rho f \left(a_1 \eta K^{\dagger}H + a_3 \pi^a K^{\dagger} \sigma^a H + h.c. \right)$$

Mixing between the elementary Higgs and the composite Kaon

Before mass mixing only the SM elementary Higgs has coupling to SM matter

Half-Composite Type-I 2HDM [Antipin and Redi 1508.01112]

From the anomaly term

$$\Gamma(\Pi \to VV) = \frac{c_{\Pi}^2}{64\pi^3} \frac{\alpha_i \alpha_j}{f^2} \frac{m_{\Pi}^3}{f^2}$$

Anomaly coefficients: depend on the reps of the VLFs

- Pions of identical species promptly decay through anomalies

Pions of different species can only decay through Yukawa terms They are stable from the point of view of the strong sector **Technimeson Dark Matter** [Antipin et al.1503.08749]

Indirect bounds on VLC theories

Higgs couplings

Daniele Barducci

An almost elementary Higgs

Benchmark scenario: $L + N \mod$

Three light flavours, chiral dynamics as in QCD - Easy to study

- $\eta_{\rm }$ singlet EW ALP like particle
- ${\cal K}\,$ complex doublet mixing with the Higgs
- $\pi~$ real triplet

$y_+, y \sim 0$	$y_+, y \neq 0$		
<u>Anomalous scenario</u>	<u>Mixed scenario</u>		
- K,π pair produced via EW interactions	- K and H mix		
$\mathcal{L} \sim g W^a_\mu K^\dagger \sigma^a \overleftrightarrow{D} K$ and through techni-rho decay $ ho o \pi \pi$ - η, π decay through anomalies - K stable	 The Higgs VEV induces a mixing amongst all the pions Pions inherit also Higgs like decay $y_+ \ll y$ or $y_+ \gg y$ 		
"Universal" phenomenology	Model dependent phenomenology		

Elusive state: what can we say at the LHC for EW ALPs?

Daniele Barducci

An almost elementary Higgs

<u>Mixed scenario:</u>

$$\mathcal{L} \sim \epsilon y_+ m_\rho \pi^a H^\dagger \sigma^a H$$

- decay to longitudinal gauges bosons and fermions
- behaves as a Higgs-like states production via gluon fusion
- possible to recast ZZ and WW resonances: $y_-y_+ < 0.1$

Anomalous scenario:

- pair production through s-channel SM gauge boson or techni-rho Single production through VBF generally subdominant
- decays in transverse gauge bosons
- sizable rates with clean final states!

$$\mathscr{L}_{F\tilde{F}} = -c_{WB}^{\pi} \frac{g_1 g_2}{16\pi^2} \frac{\pi_a}{f} W^a_{\mu\nu} \tilde{B}^{\mu\nu}$$

$$\mathcal{L} \sim g_{\rho} \rho_a^{\mu} (\pi^T T^a \overleftrightarrow{D}_{\mu} \pi)$$

Model available at http://feynrules.irmp.ucl.ac.be/wiki/VLC_LN

Daniele Barducci

An almost elementary Higgs

CoDyCE - LIO 20

The exchange of a resonant techni-rho boosts the cross-section

Clean $3\gamma W$ signature with $\mathcal{O}(10)$ fb rates

Hard photons allows to effectively reduce fake backgrounds from $2\gamma j$

Daniele Barducci

Simple selection cuts can improve the sensitivity up to ~ 1 TeV π masses

 $p_T^{\gamma_{1,2,3}} > 300, 100, 100 \text{ GeV}$

No peak reconstruction required

The ATLAS collaboration is performing such analysis

Anomalous scenario:

- stable due to species number conservation
- Signatures:
 - K^0 missing energy
 - K^{\pm} charged track in the detector $m_K \gtrsim 400 \,\mathrm{GeV}$

Mixed scenario:

$$y_+ \ll y_-$$

- 2HDM type-I like structure:

give rise to different pheno

$$y_+ \gg y_-$$

or

If $y_+ \ll y_-$ heavy-Higgs like behaviour

Heavy Higgs searches probe of this regime

Models with a V-type VLQ presents quintuplet pNGBS No mixing with the Higgs - simple phenomenology

$$\begin{aligned} \sigma(pp \to \phi^{++}\phi^{--}) &= 4 \times \sigma(pp \to \phi^{+}\phi^{-}) = 4 \times \sigma(pp \to \pi^{+}\pi^{-}) \,, \\ \sigma(pp \to \phi^{\pm\pm}\phi^{\mp}) &= \frac{2}{3} \times \sigma(pp \to \phi^{\pm}\phi^{0}) = 2 \times \sigma(pp \to \pi^{\pm}\pi^{0}) \,. \end{aligned}$$

▶ 4W final state - same-sign multilepton $m_{\phi}^{++} \gtrsim 400 \, {\rm GeV}$

 $3\gamma W$ as for the pions - with higher cross-section

Conclusions

$$d_e \sim 10^{-26}\,\mathrm{e\,cm} \times \mathrm{Im}[y_-y_+^*] \times \left(\frac{\mathrm{TeV}}{\mathrm{Min}[m_{\pi_3,\eta}]}\right)^4 \times \left(\frac{m_\rho}{\mathrm{TeV}}\right)^2$$

Anomalous scenario								
NGB	Production		n	Decay		Model	parameters	LHC
π	EW pair prod. EW pair prod.			multi- V_T		$c_{VV}N/f_{\pi}$		\checkmark
K	EW	pair pr	od. disappea	disappearing tracks/HSCP/ E_T^{miss} -			_	✓
$\begin{tabular}{ c c c c } \hline Tree-level scenario $y \gg y_+$ \\ \hline \hline NGB & Production & Decay & Model parameters & LHC \\ \hline \end{tabular}$								
		$\frac{\pi}{\pi}$	gg-fusion	$\frac{\text{Decay}}{V_L V_L}$	ϵy_+			
		K	gg-fusion	$V_L V_L$	ε		\checkmark	
		η	gg-fusion	$V_T V_T, tt, bb$	ϵy_+			
$P-$ invariant scenario $y_+ \gg y$								
NGB Production Decay Model parameters LHC								

NGB	Production	Decay	Model parameters	LHC
π	gg-fusion	$V_L V_L$	ϵy_+	\checkmark
K	gg-fusion	$H\eta$	ϵ	\checkmark
η	gg-fusion / K decay	$V_T V_T, tt, bb$	ϵy_+	\checkmark

- VLC theories are safe from EWPT and flavour bounds
- Rich phenomenology testable in multiple final states
- Signatures common to many models for composite Dark Matter
- Experimental efforts are being pursued

Thank you

Multiphoton background

Com	parison	with	ATLAS	[25]
	Lor!	E en 1	0.10	

Process	[25] [fb]	Our [fb]
3γ	16.7	18.4
2γ j	17.2	83.4

Comparison with [44]						
Process	[44] Gen. [fb]	Our Gen. [fb]	[44] Reco. [fb]	Our Reco. [fb]		
$3\gamma+\{0,1,2\}j$	2.5	3.7	2.0	1.6		
$2\gamma+\{0,1,2\}j$	7.2×10^{3}	9.7×10^{3}	5.9	4.7		

$\gamma - j$ Mis-ID probability

$$\mathcal{P}_{j \to \gamma} = 0.5 \times 10^{-4} + 1.5 \times 10^{-4} \times p_T / \text{GeV} \quad p_T < 28 \text{ GeV}$$

 $0.0093 e^{-0.036 p_T^j / \text{GeV}} \quad p_T > 28 \text{ GeV}$