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Introduction

Field theories RG flow between fixed points in parameter space:

IR

fixed point

UV

fixed point

UV and IR fixed points could be weak (perturbative) or strong

(non-perturbative)
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The usual paradigm is

UV fixed point free (asymptotic freedom)

IR

fixed point

UV

free
(asymptotic freedom)

However other possibilities (Litim, Sannino)

UV fixed point not free, either weak or strong (asymptotic safety)

IR

fixed point

UV

not free
(asymptotic safety)
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We will be interested in asymptotically safe (AS) theories with

either

weak-weak fixed points (perturbative along the flow - Banks, Zaks)

or

strong-strong fixed points (non-perturbative along the flow)
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Constraints on RG flows

Suppose we have: fixed point 2 (UV) → fixed point 1 (IR)

IR

fixed point 1

UV

fixed point 2

Can we reverse the flow? fixed point 1 (UV) → fixed point 2 (IR)

UV

fixed point 1

IR

fixed point 2

The answer is NO and the reason is the a-theorem

Lyon’18 5



Borut Bajc

The central charge a defined from the trace anomaly for

stress-energy tensor Tµν in curved background :

Tµµ = −a× E4 + . . .

Euler invariant

E4 = RαβγδRαβγδ − 4RαβRαβ +R2

quadratic diffeomorphism invariant combination
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The central charge can be connected (Komargodski-Schwimmer) to

the dilaton-dilaton (φφ) scattering:

aKS(µ) = aUV −
∫ ∞
µ

dµ
σφφ→φφ(µ)

µ3

Since cross-section σ > 0→ aKS(µ) decreasing from UV to IR

(a-theorem)

∆a ≡ aUV − aIR > 0

Because of it

• RG flow is irreversible

• aKS provides a measure for # of d.o.f.

• since cross-section σ is a physical quantity, so is aKS(µ)
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a-central charge at the fixed point

In a generic field theory a can be calculated perturbatively.

In most cases this not useful because fixed point non-perturbative

Fortunately in supersymmetry central charges can be got exactly

Lyon’18 8



Borut Bajc

(Ri, ni) . . . (R− charge,# d.o.f.) of chiral field i

|G| . . . dimension of gauge group G = # of gauge fields

a1(R) ≡ 3(R− 1)3 − (R− 1)

a = 2|G|︸︷︷︸
gaugino

+
∑
i

nia1(Ri)︸ ︷︷ ︸
chiral fields

Total a equal to sum of single a1 (one for each chiral multiplet)
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This exact relation is due to the fact that

Tµν and jµR are different components of the same supermultiplet

→ relations between Tµµ and ∂µj
µ
R :

Tµµ = −a E4 + . . .

∂µj
µ
R = [Tr U(1)R]︸ ︷︷ ︸

∝
∑

i ni(Ri−1)

RαβγδR̃
αβγδ +

[
Tr U(1)3R

]︸ ︷︷ ︸
∝

∑
i ni(Ri−1)3

FRµν F̃
µν
R

U(1)R symmetry unavoidable in supersymmetric fixed points

(conformal theories): R charge part of the superconformal algebra
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If we know the R-charges, we know the central charge a

How do we get the R-charges Ri?

In a general SCFT

R(chiral superfield) =
2

3
D(chiral superfield)

R charge ↔ anomalous dimension

For a free theory (D(φfree) = 1)

R(φfree) = 2/3
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For non-trivial SCFT the β functions must vanish:

• NSVZ β function is proportional to

T (G) +
∑
i

T (ri)(Ri − 1) = 0

T . . .Dynkin index

• β function for superpotential Yukawa coupling ya of

W = ya
∏
i

φqiai

is proportional to ∑
i

qiaRi − 2 = 0
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Three possibilities:

1. # of constraints above bigger than number of chiral fields

→ no SCFT

2. # of constraints above equal to number of chiral fields

→ the solution to above equations unique and represents a

possible candidate for CFT

3. # of constraints above smaller than number of chiral fields

→ one uses the above equations to express some R-charges

with the others; then applies the a-maximization to calculate

the remaining R-charges:
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a-maximization:

∂a

∂Ri
= 0

This gives same number of equations than unknowns Ri.

Equations are quadratic so there can be several real solutions. One

should choose the one with

∂2a

∂Ri∂Rj
all negative eigenvalues
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The constraints can be enforced by Lagrange multipliers:

a = 2|G|+
∑
i

a1(Ri)

+ λ1

(
T (G) +

∑
i

T (ri)(Ri − 1)

)
+
∑
a>1

λa

(∑
i

qiaRi − 2

)

From

∂a

∂λa
= 0 , a = 1, . . .

we solve for Ri and plug in into a. This is the standard way for

solving at the fixed point.

Lyon’18 15



Borut Bajc

Another way (Kutasov) is:

First solve

∂a

∂Ri
= 0→ Ri = Ri(λ)

and then plug in into a:

aK = a(Ri(λ), λ)

The interpretation now is different: at the fixed point again

∂aK
∂λa

= 0 , a = 1, . . .

and the result is the same as before.
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But one can interpret aK = a(Ri(λ), λ) as the a function along the

flow with λ changing from λIR in IR to λUV in UV.

Example: perturbative SQCD with some matter (W = 0), only one

Lagrange multiplier, λ1:

aK = 2(N2
c − 1) +

∑
i

a1(Ri) + λ1

(
Nc +

∑
i

Ti(Ri − 1)

)

∂aK
∂Ri

= 0 → Ri(λ1)

All Ri(λ1) (and so all anomalous dimensions) determined just by

one function along the flow - λ1(µ)
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• in the UV λ1 = 0

• For small λ1 the theory is perturbative and one finds the 1-loop

relation

λ1 = − g2

2π2
+O(g4)

• one can repeat the calculation up to 3-loops getting agreement

for the scheme independent part of the perturbative calculation

of the anomalous dimensions

• the flow ends at IR CFT when (at some λ∗1) NSVZ vanishes:

T (G) +
∑
i

T (ri) (Ri(λ
∗
1)− 1) = 0
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Duality

Seiberg type dualities connect theories with different gauge group

and field content but same flavor structure.

The original (and simplest) example is SQCD:

ELECTRIC MAGNETIC

SU(Nc) : g SU(Nf −Nc) : g̃

Nf ∗
(
Q+ Q̃

)
Nf ∗ (q + q̃) +N2

f ∗M

W = 0 W = ỹ qMq
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• valid only in the IR (in the fixed point)

• valid only in the conformal window 3Nc/2 ≤ Nf ≤ 3Nc

(both electric and magnetic theories asymptotically free)

• quantum numbers of magnetic singlets M ∼ Q̃Q

R(M) = 2R(Q)

This follows from magnetic superpotential W ∼ q̃qM

2R(q)+R(M) = R(W )= 2

together with (at the fixed point)

2R(q)+2R(Q) = 2

(
1− Nf −Nc

Nf

)
+ 2

(
1− Nc

Nf

)
= 2

• at least one theory must be strongly coupled (no duality

possible between two different gauge theories at weak coupling)

• duality of type strong↔weak (one weak, the other strong)
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If a theory has a nontrivial UV fixed point and a nontrivial IR fixed

point, and we know the duals of both of them, then reasonable that

they are dual in the whole flow
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Consider the following simple example:

1. first at µ→∞ have SQCD with SU(Nc) and Nf + 1 quarks in

the conformal window (3Nc/2 < Nf + 1 < 3Nc)

electric and magnetic theories different

2. run down to the IR, in the IR the usual duality between

electric and magnetic theory

3. perturb the electric theory with a mass m for 1 quark pair; let

this mass deep in the fixed point regime, duality still valid

WE = mQ̃Nf
QNf

WM = mMNf

Nf + q̃qM → 〈q̃Nf
qNf 〉 = −m
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4. right above the mass (µ→ m+ 0 - this is now the new UV)

we thus have duality between:

- electric theory is SU(Nc) with Nf + 1 quark pairs

- magnetic theory is SU(Nf + 1−Nc) with Nf + 1 quark pairs

they are dual to each other (equivalent)

5. in the deep IR (µ→ 0) (this is now the new IR) again (a new)

duality

- electric theory is SU(Nc) with Nf quark pairs

- magnetic theory is SU(Nf −Nc) with Nf quark pairs

they are dual to each other (equivalent)
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t ≡ log (µ/m)

Duality valid at UV (t = 0 or µ = m) and IR (t = −∞ or µ = 0).

We thus assume that duality between the electric and magnetic

theory is valid in the whole interval −∞ < t < 0 (0 < µ < m)

IR (t < 0) UV (t > 0)

magnetic

theory

Nf flavours Nf + 1 flavours

Ñc colours Ñc + 1 colours

electric

theory

Nf flavours Nf + 1 flavours

Nc colours Nc colours

Ñc ≡ Nf −Nc
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Magnetic theory

If we choose

Nf = 3Ñc − 1

then the magnetic theory is weakly coupled

β1 = 3Ñc −Nf = 1

and we can calculate the flow perturbatively
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α̃g ≡
Ñcg̃

2

(4π)2
, α̃y ≡

Ñcỹ
2

(4π)2

Up to 2 loops

d

dt

α̃g(t)
α̃y(t)

 =
(
α̃g(t) α̃y(t)

)
M

α̃g(t)− α̃g(−∞)

α̃y(t)− α̃y(−∞)


M . . . perturbatively calculable 2× 2 matrix

(α̃g, α̃y)(−∞) . . . perturbatively calculable fixed points values

This can be easily numerically solved
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Ñc = 100 (→ Nf = 299, Nc = 199)

-30000 -25000 -20000 -15000 -10000 -5000 0
t

0.01

0.02

0.03

0.04

α̃g

-30000 -25000 -20000 -15000 -10000 -5000 0
t

0.002

0.004

0.006

0.008

0.010

α̃y

Magnetic theory solved
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Electric theory

What about the electric theory?

αg ≡
Ncg

2

(4π)2
, f(x) ≡ 1

1− 2x

Formally we can write the RGE:

dαg(t)

dt
= − 6

Nc
α2
g(t)f(αg(t)) (Nc +Nf (RQ(t)− 1))︸ ︷︷ ︸

NSVZ β function

Problem: theory non-perturbative so we do not know RQ(t) except

in the fixed points (R-charges of Q in the conformal field theories)

RQ(0) = 1− Nc
Nf + 1

(UV)

RQ(−∞) = 1− Nc
Nf

(IR)
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How can duality help?

We need a physical quantity which have to be the same in the

electric and magnetic theory.

What about the a central charge?

Remember, we had two ways to define it outside the fixed points:

Lyon’18 29



Borut Bajc

1) Komargodski, Schwimmer: through dilaton-dilaton (φφ)

scattering

a(µ) = aUV −
∫ ∞
µ

dµ
σφφ→φφ(µ)

µ3

• since cross-section σ > 0→ a(µ) decreasing from UV to IR

(a-theorem)

• since cross-section σ is a physical quantity, so is a(µ)

Non-perturbative electric ael(µ) and perturbative magnetic

amag(µ) should match along the whole flow

ael(µ) = amag(µ)

Good to prove a-theorem but not easy to calculate
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2) Kutasov: with Lagrange multipliers

ael = 2(N2
c − 1) + 2NfNca1(RQ)− λg(Nc +Nf (RQ − 1))

Maximisation:

dael
dRQ

= 2NfNca
′
1(RQ)− λgNf = 0

→ λg = 2Nca
′
1(RQ)

→

ael(RQ) = 2(N2
c − 1)

+ 2NfNc [a1(RQ)− a′1(RQ) (RQ −RQ(−∞))]

Still we do not know what RQ(t) along the flow is
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No proof that Komargodski-Schwimmer and Kutasov definitions

coincide.

However possible to prove they do coincide for simple cases

We assume that they coincide in general

→ ael(RQ(t)) = amag(α̃g(t), α̃y(t))

r.h.s. perturbatively calculable → RQ(t).

Then from formal RGE

dαg(t)

dt
= − 6

Nc
α2
g(t)f(αg(t)) (Nc +Nf (RQ(t)− 1))

→ αg(t) once we choose αg(0) < 0.0216
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-30000 -25000 -20000 -15000 -10000 -5000
t

0.05

0.10

0.15

0.20

0.25

αg
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Notice that

• magnetic α̃g decreasing towards IR (more perturbative)

but

electric αg increasing towards IR (more non-perturbative)

→ strong-weak duality

• There is only one αg(0) which is correct, duality is exact only

there.

Unfortunately we do not know which one.
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Conclusion

• aKS physical because uniquely connected to dilaton-dilaton

cross-section

• aK defined along the flow as function of the R-charges

(anomalous dimensions)

• some hint that aKS(µ) = aK(µ)

• assuming it correct → explicit example of Seiberg duality in

the whole flow (modulo one number)
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