Central charges and their constraints Rules for drawing the maps of QFTs

Vladimir Prochazka

Uppsala University

Lyon BSM workshop, Aug 2018

Vladimir Prochazka (Uppsala University)

Central charges

Overview

RG flows and anomalies

- The trace anomaly
- The a-theorem
- Gradient flow equation

Perturbative Gauge-Yukawa theories

- Very large N_c
- Moderately large N_c

3 Conformal window

RG flows generalities

- In the UV, IR theory is conformal described by operator dimensions, central charges etc.
 → conformal data
- Deforming by *relevant* operators triggers RG flow
- Different deformations lead to different CFTs in the IR

 → phase diagram (cf. Francesco's talk)

Most popular examples

- UV theory free with IR interacting fixed point → asymptotic freedom
- IR theory free with UV interacting fixed point → asymptotic safety

- Our goal is to draw a map of QFTs- I.e understand the flows between various CFTs.
- Can we say something about which flows are allowed based solely on their asymptotics?
- Want to define a universal quantity (∃ in any generic theory) that describes the theory along the flow.
- Rules:
 - Unitarity-gives bounds.
 - Renormalizability-guarantees dependence on *finite* number of renormalized parameters.
 - Perturbativity (optional)- calculable at weak coupling.

.

Anomalies

- Classical symmetries are broken by quantum effects
- Corresponding Noether currents have anomalous divergence:

$$\partial^{\mu} j_{\mu} = c \; \partial \mathbf{O}$$

• The anomaly c is usually related to type/number of d.o.f

Example: Chiral anomaly when gauging a global symmetry current *j*⁵

$$\langle \partial^{\mu} j^{5}_{\mu} \rangle \propto c \, \mathbf{F}_{\mu\nu} \tilde{\mathbf{F}}^{\mu\nu} \sim$$

- c_{UV} is calculated from massless triangle graphs depends on the fermion content of the UV theory
- t'Hooft anomaly matching equates c_{UV} with c_{IR}
- Gives a non-perturbative constraint (higher loop effects cancel due to Adler-Bardeen theorem).

 Gauge the conformal symmetry by coupling the theory to a background metric g_{μν}, which transforms

$$g_{\mu\nu} \rightarrow e^{-2\alpha(x)}g_{\mu\nu}$$

• Conformal anomaly is given in terms of the trace of E-M tensor $(\partial \cdot j_D = T^{\mu}_{\mu})$

$$\langle T^{\mu}_{\mu}
angle = a\,E_4 + c\,W^2 + b\,R^2 + ilde{b}\square R$$

- a, b, c, \tilde{b} are the central charges 4D QFT
- Unlike the chiral anomaly case central charges run even in perturbation theory.

• The Weyl squared coefficient satisfies

 $c^{\rm UV,IR} \sim {\rm Im}\langle TT \rangle^{\rm UV,IR} > 0$

• Positive energy condition $\langle E \rangle_{S^2} \ge 0$ implies the collider bounds [Hofman, Maldacena '08]

$$\frac{1}{3} \le \frac{a^{\text{UV,IR}}}{c^{\text{UV,IR}}} \le \frac{31}{18}$$

• The quantity \tilde{b} is ambiguous in CFT but nevertheless $\Delta \tilde{b}$ is well defined through a sum-rule [Anselmi '99], [VP, Zwicky '17]

$$\Delta \tilde{b} = \frac{1}{3\cdot 2^7} \int d^4 x x^4 \langle \Theta \Theta \rangle$$

The a-theorem

(weak) *a*-theorem

$$\Delta a = a_{UV} - a_{IR} \ge 0$$

Strong *a*-theorem

$$\dot{\tilde{a}} > 0 \ ; \ \tilde{a}_{UV,IR} = a_{UV,IR}$$

- Effective number of d.o.f decreases along the RG flow.
- First stated/proven in 2D by Zamolodchikov [Zamolodchikov '86]

$$\langle T^{\mu}_{\mu}
angle_{2d} = cR$$

- Zamolodchikov found $\dot{\tilde{c}} \sim \text{Im} \langle \Theta \Theta \rangle > 0$
- Cardy proved Euclidean version $\Delta c \sim \int x^2 \langle \Theta(x) \Theta(0) \rangle$

The (weak) a-theorem in 4d

• The proof [Komargodski, Schwimmer '11], [Komargodski '12] introduces external compensator field τ to restore scale invariance via

$$\mu \rightarrow \mu e^{\tau}$$

 Integrating out the dynamical fields leaves us with an IR effective action (cf. Claudio's talk)

$$\Delta a \Gamma_{WZ}$$
 + non-local $\stackrel{e.o.m}{=} \Delta a (\partial \tau)^4$ + ...

• Since τ corresponds to the source for $\Theta = T^{\mu}_{\mu}$

$$\Delta a \stackrel{on-shell}{\sim} \operatorname{Im} \langle \Theta \Theta \Theta \Theta \rangle \geq 0$$

 Uses Minkowski methods → Euclidean proof a'la 2d not clear → would be useful to lattice simulations

The gradient flow

We will consider a set of marginally relevant operators {*O_i*} couplings {*g_i*} generating the trace of EMT

$$\Theta \equiv T^{\mu}_{\mu} = \beta^{I} O_{I}$$

• Strongest version of the *a*-theorem asserts that

$$\partial_I \tilde{a} = \equiv G_{IJ} \beta^J$$
; $G_{IJ} = G_{JI}$

Implies (Weyl) consistency conditions

$$\partial_I \beta_J = \partial_J \beta_I$$

- Implies the beta functions follow from the gradient of *ã*.
- At leading order in perturbation it was proven in [Osborn '89]

$$G_{IJ} = \chi_{IJ} + O(\beta_I)$$

 Weyl consistency implies relation between perturbative beta functions and correct counting 2-1-0, 3-2-1 etc. [Sannino at al '13]

Gauge-Yukawa theories at LO

• We will at the most generic standard model-like 2-1-0 setup

$$\begin{split} \beta_g^a &= -\frac{g_a^3}{(4\pi)^2} \left[b_0^a + \frac{(b_1)^{ab}}{(4\pi)^2} g_b^2 + \frac{(b_y)^a_{IJ}}{(4\pi)^2} y^I y^J \right] , \\ \beta_y^I &= \frac{1}{(4\pi)^2} \left[(c_1)^I_{JKL} y^J y^K y^L + (c_2)^{bI}_J g_b^2 y^J \right] , \end{split}$$

• The leading contribution to the metric χ_{IJ} is given

$$\chi = \begin{pmatrix} \frac{\chi_{gaga}}{g_a^2} (1 + \frac{A_a}{(4\pi)^2} g_a^2) & 0\\ 0 & \chi_{y_l y_l} \end{pmatrix}$$

 Want to use the above to compute the conformal data- critical exponents, OPE coefficients, a,c to LO accuracy at the given fixed point.

*a**, *c** at LO

• Solving the 2-1-0 Weyl consistency condition and taking the fixed point limit gives [Dondi, VP, Sannino '17]

$$egin{aligned} &a^* = ilde{a}^{ ext{free}} - rac{1}{4} rac{1}{(4\pi)^2} \sum_a b_0^a \chi_{g_a g_a} g_a^{*2} igg(1 + rac{A^a g_a^{*2}}{(4\pi)^2} igg) + O(g_a^{*6}, y_l^{*6}); \ &a^{ ext{free}} = rac{1}{360(4\pi)^2} igg(n_\phi + rac{11}{2} n_\psi + 62 n_v igg) \end{aligned}$$

- The *a*-function at fixed depends solely on the gauge coupling at this order.
- The quantity *c* only known to $O(g_a^2, y_l^2)$

$$c^{*}=c^{ ext{free}}-O(g_{a^{*}}^{2}y_{l}^{2});$$

 $c^{ ext{free}}=rac{1}{(4\pi)^{2}}rac{1}{20}(2n_{v}+n_{\psi}+rac{1}{6}n_{\phi})$

Asymptotically free(safe) theories at very large N_c

• At very large N_c perturbative fixed point arises provided

$$\frac{|b_0^a|}{N_c} \equiv \epsilon \ll 1$$

- Expansion in powers of
 e is under control
- Free examples: Banks-Zaks, CAF
- Safe examples: Litim-Sannino, Pelaggi-Sannino-Strumia-Vigiani
- The *a*-theorem is trivially satisfied since

$$\Delta a = \pm rac{1}{4} rac{1}{(4\pi)^2} b_0^a \chi_{gg} g_a^{*2} + O(\epsilon^3) \ .$$

where the plus (minus) applies to asymptotically free coupling with $b_0^a > 0$ (safe coupling with $b_0^a < 0$)

• c is given by its free-field value for small ϵ

Theories with moderately large N_c

CAF with charged scalars

Fields	$[SU(N_c)]$	$SU_L(N_f)$	$SU_R(N_f)$	$U(N_s)$
ψ			1	1
$ $ $ ilde{\psi}$		1		1
ϕ		1	1	

The collider bound is most constraining in this case:

Theories with moderately large N_c

CAS in Georgi-Glashow models [Molgaard, Sannino '17]

The model is anomaly free with the interactions between chiral fermions and scalars are described via the following Lagrangian terms

$$\mathcal{L}_{H} = y_{H}f_{a}\bar{\psi}_{a}A H + h.c.$$

$$\mathcal{L}_{M} = y_{M}[\delta_{ab} - f_{a}f_{b}]\bar{\psi}_{a}M_{bc}\psi_{c} + y_{1}f_{a}f_{b}\bar{\psi}_{a}M_{bc}\psi_{c} + h.c.$$
(1)

Theories with moderately large N_c

Constraints on the Georgi-Glashow CAS model

	$N_c = 5, p =$	$N_c = 6, p =$	$N_c = 8, p =$
	26	30	39
α_g^*	1.41	0.0325	0.0481
α_{H}^{*}	6.12	0.151	0.241
α_M^* α_1^*	0.652	0.0155	0.0233
α_1^*	0.312	0.00652	0.00801
θυν	-0.0428	-0.00585	-0.00602
a ×	-1311	14.7	21.6
$(4\pi)^2$			
C X	710	47.5	126
$(4\pi)^2$			
a/c	-1.84	0.296	0.171
Δa	-1321	-0.537	-4.27

- *a*-theorem and the collider bounds seem to give strongest constraints in these cases
- These arguments giver limits similar to perturbative unitarity rather than ruling out the models completely
- The approach has been followed up [Barducci, Fabbrichesi, Nieto, Percacci, Skrinjar '18]

a-theorem in the conformal window

- ∆a in the chirally broken phase of QCD can be computed purely from the free-field value (IR consists of free pions) → doesn't give any interesting constraints
- The chiral phase is in the conformal window → beta function expected to have strongly coupled IR fixed point
- Relevant to composite Higgs models and their lattice realizations
- $\Delta a > 0$ expression could provide limits on the number of flavours
- Idea: Find a formula for Δa suitable for lattice simulations
- The result: For gauge theories in conformal window we have [VP, Zwicky '18]

$$\Delta a = \frac{1}{3 \cdot 2^8} \int d^4 x x^4 \langle \Theta(x) \Theta(0) \rangle = \frac{1}{16} \int \beta^2 \chi^R_{gg} d \ln \mu$$

where the QCD trace anomaly gives $\Theta = \frac{\beta}{2} [\frac{1}{a^2} G^2]$

Proof of the relation

- For a gauge theory without scalars $O_g = \frac{1}{q_a^2} G^2$
- Start from the general relation

$$\Delta a = \frac{1}{16} \int \beta^2 (\chi_{gg}^R - \frac{\beta}{2} \chi_{ggg}^R)$$
 (2)

where R stands for subtraction scheme of 2,3 point functions

 Under a generic change of subtraction constant by a finite constant ω_{gg(g)}(g²) we have

$$\chi_{gg(g)}^{R'} = \chi_{gg(g)}^{R} + 2\mathcal{L}_{\beta}\omega_{gg(g)}$$

• Can we find scheme change that eliminates χ^{R}_{gag} ?

Proof of the relation

 For AF, it is possible to find an all order solution in the vicinity of Gaussian UV fixed point

$$\omega_{ggg}(a_s) = \frac{1}{2\beta^3} \int_0^{a_s} \beta^2(u) \chi_{ggg}^{\mathsf{R}}(u) \frac{du}{u}$$

- This solution is finite provided χ^{R}_{qqq} vanishes at the Gaussian FP
- Remarkably this is the case as can be shown by direct computation of (G²G²G²)
- Similarly a solution exists near non-trivial IR fixed point a^{*}_s

$$\omega_{ggg}(a_s) = \frac{1}{2\beta^3} \int_{a_s^*}^{a_s} \beta^2(u) \chi_{ggg}^{\mathsf{R}}(u) \frac{du}{u}$$

- This is again finite due to power-like behaviour near a^{*}_s
- Patch the two solutions to find \u03c8_{ggg} everywhere
- For AS the proof can be repeated with UV-IR roles inverted

Lattice application

- On the lattice one has finite quark mass m_q
- Define a 'lattice a-function' with IR cutoff

$$A(\Lambda_{\mathrm{IR}}, m_q, L) \equiv \frac{1}{3 \cdot 2^8} \int_0^{\Lambda_{\mathrm{IR}}^{-1}} d^4 x \, x^4 \langle \Theta(x) \Theta(0) \rangle_c$$

- Before any model is tested in lab/collider it has to satisfy various theoretical consistency constraints
- We asked whether central charges are useful to say something about currently used models
- The topic is worth pushing in various directions- lattice, large N_f etc.