

Search for the Standard Model Higgs boson produced in association with top quarks in the H->bb final state with ATLAS

Alessandro Calandri CPPM-Aix Marseille Université

arXiv.1712.08895

IPHC Séminaire Hautes Energies Strasbourg, March 16th 2018

Outline of the talk

Search for the Standard Model $ttH \rightarrow bb$

- results released by ATLAS on 2015+2016 Run 2 data <u>https://arxiv.org/abs/1712.08895</u> (accepted for publication in Phys. Rev. D)
- quick detour on b-tagging algorithm and performance optimization for the physics analysis (ATLAS-PHYS-PUB-2017-013)
- Recap on the ATLAS results on 2015+2016 data on ttH→WW/ZZ/TT ("multilepton" final state) and final ttH combination, <u>https://arxiv.org/abs/1712.08891</u> (accepted for publication in Phys. Rev. D)
- Wrapping-up and conclusions

Yukawa couplings at the LHC

- Higgs boson Standard Model (SM) coupling to fermion proportional to $(\sqrt{2}m_f)/v$
 - Yukawa's interactions in the SM → electroweak symmetry breaking mechanism: creation of fermion masses
 - any significant deviation from the expected value would hint to New Physics

Top-quark Yukawa couplings at the LHC

- Constraints on top-quark Yukawa couplings already provided with Run I measurements
 - ATLAS/CMS combination available

	ATLAS +CMS	ATLAS	CMS
Kt	0.87±0.15	0.98±0.20	0.77±0.20
μ (ttH)	2.3±0.7	1.9±0.8	2.9±1.0

Particle mass [GeV]

ttH production at LHC

ttH channels and experimental signatures

Channel	H decay	tt decay	Journal paper
ttH (H→bb)	H→bb	I,2 leptons (e,μ)	arXiv:1712.08895 (PRD)
ttH (H→multi-lepton)	H→WW*/ZZ*/ττ	I,2 leptons (e,μ,τ)	arXiv:1712.08891 (PRD)
H→ZZ*→4I	H→ZZ*→4I	0,2 leptons (e,µ)	ATLAS-CONF-2017-043
Η→γγ	Η→γγ	0,2 leptons (e,µ)	ATLAS-CONF-2017-045
ttH combination			arXiv:1712.08895 (PRD)

Focus on ATLAS ttH ($H \rightarrow bb$) results in this seminar and quick wrap-up on ttH combination

The ATLAS experiment

Fundamental to fully exploit identification and reconstruction of final state particles, jets, b-jets, and leptons

 excellent understanding and optimization of performance of various sub-detectors (inner tracker, calorimeters and muon spectrometer)

Data-taking

- Excellent performance of the LHC accelerator and the ATLAS experiment for 2015-2016 data-taking
- Approximately 36.5 fb⁻¹ pp data collected by ATLAS in 2015-2016 after data quality requirements
 - data recording efficiency over 93% in 2015 and 2016
 - mean number of interactions per bunch-crossing (μ) ~ 25
 - A lot more data collected in pp collisions in 2017 (40 fb⁻¹) with higher peak luminosity and larger μ

ttH Run 2 legacy result will target full 2015-2018 data statistics (~100 fb⁻¹)

expected by late 2018/beginning 2019

Performance of jets and leptons

Small uncertainty on jet energy response and calibration

jet energy scale and jet energy resolution uncertainties below 1% for pt>150 GeV and approximately 5-7% in the low pt region (pt<60 GeV)

Very small experimental uncertainties arising from jet calibration (scales and resolution) affecting the measurement Lepton and muon performance

- very high lepton reconstruction and efficiency and negligible uncertainty
 - Z→II, J/ψ→II
- robust energy calibration for electrons (Ζ, J/ψ) and muons
- pile-up dependence of calibration found to be small

Tracking

Digitization model uniform charge deposition along trajectory of ionizing particle → more realistic charge distribution exploited by the Bichsel model (pointlike interactions)

 \checkmark

- track-hit residual resolution smeared
- broader IP distributions in MC - better data/MC agreement
- studied on eµ enriched
 data sample and Zµµ
 +jets
- improvements in input d0 distributions and in the final MV2c10 tagger

IPTag - track categorization

- Impact-parameter-based taggers make use of transverse and longitudinal impact parameter significance to separate b/c- and light-flavour hypotheses
- Tracks are required to have pt>1 GeV, |d0|<1 mm, $|z0 \cdot sin\theta|<1.5$ mm, 7 or more silicon hits, with at most 2 silicon holes, at most one of which is in the pixel detector
- Track categories are defined by silicon hit patterns on a reconstructed track such that quality criteria are used to build different templates for u/b/light d0/z0 significances

		Fractio	nal contr	ribution [%]
#	Category	<i>b</i> -jets	c-jets	light-jets
0	No hits in first two layers; expected hit in IBL and b-layer	1.9	2.0	1.9
1	No hits in first two layers; expected hit in IBL and no expected hit in b-layer	0.1	0.1	0.1
2	No hits in first two layers; no expected hit in IBL and expected hit in b-layer	0.04	0.04	0.04
3	No hits in first two layers; no expected hit in IBL and b-layer	0.03	0.03	0.03
4	No hit in IBL; expexcted hit in IBL	2.4	2.3	2.1
5	No hit in IBL; no expected hit in IBL	1.0	1.0	0.9
6	No hit in b-layer; expected hit in b-layer	0.5	0.5	0.5
7	No hit in b-layer; no expected hit in b-layer	2.4	2.4	2.2
8	Shared hit in both IBL and b-layer	0.01	0.01	0.03
9	At least one shared pixel hits	2.0	1.7	1.5
10	Two or more shared SCT hits	3.2	3.0	2.7
11	Split hits in both IBL and b-layer	1.0	0.87	0.6
12	Split pixel hit	1.8	1.4	0.9
13	Good	83.6	84.8	86.4

IPTag - outputs and results

- Log likelihood ratio computed as the sum of per-track contributions starting from pb and pu templates for b and light flavour jet hypotheses respectively
 - Assuming no correlations within the various components contributing to the sum of all tracks
- In addition to the LLR separating b vs light, LLR functions are also computed to separate b- vs cand c- vs light-flavour jets

Secondary vertex reconstruction

Look for secondary vertices to identify b-jets

- reconstructing two-track vertices
- tracks are rejected if SV likely to originate frc the decay of a long-lived particle (Ks, Λ), photon conversions or hadronic interactions with material

Extra track-requirements are used to improve the performance for the 2017 LHC run

- tracks ordered in pt at most 25 tracks with largest pt (against fragmentation at high b-jet pt)
- minimal number of hits in the silicon detectors increased by one for tracks with $|\eta| > 1.5$ (improved track quality and amount of detector material mitigated)
- tracks with low Sd0 and high Sz0 removed (impact of pileup leading to fake vertices reduced)

The soft Muon Tagger

Muons from semileptonic bdecays within jets

- Background sources in light-jets that produce a muon candidates are: prompt muons from W randomly matched to lightjets, muons from decay in flight of light hadrons, punch-through muons
- Input variables separating those muons from those of b/chadron decays: ptRel, ΔR , d0
- Additional input variables defining the quality of the muon track
- Information included in BDT as input to MV2

Data/MC

Impact-parameter taggers with recurrent NN

Correlation between tracks associated to jets exploited with modern NN techniques (Recurrent Neural Network tagger)

IP3D \rightarrow properties of tracks are treated as independent and the template PDF's in different hit categories are built neglecting track-to-track correlations - complementarity with IPTag investigated

Sequential dependencies between discriminating variables used for full characterization of properties of b-jets

Algorithm training samples

- Studied b-hadron pt vs b-jet pt correlation in ttbar and broad Z' sample
 - ttbar sample looses correlation above mT, while Z' fully characterizes the high pt phase space

Algorithm performance

MV2 - std MV2 inputs as in r20.7, MV2Mu - std MV2 inputs + SMT, MV2MuRnn - std MV2 inputs + SMT+ RNN

How b-tagging is used

(b)

b-jet identification exploited with MV2c10 multivariate discriminant

- b vs c and b vs light separation
- input variables accounting for track impact parameters, displaced secondary vertices, decay chain of B-hadrons and kinematics properties of the final state
- 5 b-tagging response according to b-jet efficiency
- Analysis categories based on MV2 response for jets being tagged
- Correction factors to MV2 response extracted on data (calibration) for three jet flavours (b-, c- and light-flavour jets)

85%

100%

77%

70%

60%

b-tagging calibration

Calibration from data \rightarrow scale factors (SF) extracted as b-jet efficiency in data and compared to efficiency in MC

b-jet calibration

dileptonic ttbar selection for tag&probe and
 PDF methods → 3/8% uncertainty on SF

c-jet calibration

 W+c calibration (triggering on the presence of µ from semileptonic c-decay) → 8-22% uncertainty on SF

light-jet calibration

- light-flavour mistag rate extracted with negative tag method in dijet events → 15-50% uncertainty
- Calibration for 4 b-tagging operation points (60%, 70%, 77%, 85% b-jet efficiency) available
 - used to define analysis regions (see later...)

tth(H->bb) - let's have a closer look

Final state reconstruction is very important to achieve a good measurement

In light of the challenging experimental signature, easy to misidentify/loose particles → analysis split in categories

tth(H->bb) - analysis channels and selection

Lepton preselection

I-lepton final state

I e/µ (p_T>27 GeV), ≥5 jets (p_T>25 GeV)

2-leptons final state

2 opposite-sign e/µ (p_T>27 GeV), ≥3 jets (p_T>25 GeV), Z-mass window veto

Requirements c	n h-iets	
	b-tagging requirements	Resolved (low pt)
eV)	Single lepton final state	\geq 2 very tight b-tags or \geq 3 medium b-tags
jets (p⊤>25	Dilepton final state	≥2 medium b-tags

Boosted category in 1-lepton

High pt subcategory of I-lepton channel

- Higgs boson and hadronically decay top quark produced with high transverse momentum (boosted)
- large radius jets (R=1.0) formed by reclustering R=0.4 calorimeter jets
- I loose b-tag outside large-jets

tt+jets production

- Dominant background tt+jets production
 - large yields and challenging modeling in Monte Carlo simulation

Matrix element generator - Powheg
 NNLO+NNLL cross section
 NLO generator with 5 flavour (5F) scheme (massless b-quark)
 PDF extracted for 5 flavours
 Parton shower and hadronization - Pythia8
 most updated tunes to data (ATLAS-PHYS-2016-020)

tt+heavy flavour sample split in 3 sub-components based on the flavour of additional jets

tt+≥ | b, tt+≥ | c, tt+light; dominant component in the measurement is tt+≥ | b (next slide)

Systematic uncertainties on tt+jets \rightarrow comparison to alternative samples with different Monte Carlo matrix elements and generators, parton shower or radiation schemes

Main background - tt+21b production

tt+B

tt+bb

tt + ≥3b

tt + bb

tt + b

tt + B

Signal and control region - single lepton

Requirements on b-tagging discriminants for jets in the event defined to split phase-space and create signal and control region (\geq 5 jets and \geq 6 jets)

- control regions (CR) enriched in reducible background
- signal region (SR) enriched in signal and reducible background (tt+ \geq 1b)
- signal purity in ultra-pure signal region: 1.6-5.3%
- highest purity regions in single lepton $\geq 6j$ with 4b very tight b-tags
- control region dominated in tt+≥ l c and tt+light and created by loosening requirements on btagging

Signal and control region - dilepton

Similar approach in dilepton final - signal and control regions to separate ttH and tt+ \geq 1b from the tt+ \geq 1c and tt+light components

 \checkmark

- SR for ≥4 jets and highest purity in 3 very-tight b-tags+1 tight/very-tight b-tags
- CRs dominated by tt+≥lc and tt+light background

Multivariate analysis

Reconstruction BDT [resolved, SR]

- aiming at reconstructing the ttHbb system and reducing combinatorics background
- Higgs boson correctly reconstructed in 50% (35%) of the cases with (without) Higgs kinematics in BDT training
- Likelihood discriminant [single lepton resolved, SR]
 - kinematic input variables (invariant mass, angles) in likelihood discriminant
- Matrix element method, MEM [single lepton resolved, 6j ultrapure SR]
 - matrix-element method for best separation in most sensitive signal region
- **Classification BDT**
 - main signal/background separation algorithm
- general kinematics of the final state, b-tagging variables
- reconstruction BDT, likelihood discriminant and matrix element method included (if present)

Finally...filting

Simultaneous profile likelihood fit to signal and control regions

- signal regions (6 in SL and 3 in DL)→ shape of classification BDT discriminant
- control regions (6 in SL and 4 in DL) →
 H_T=∑p_T for tt+≥ I c control region in SL and
 I-bin in all other control regions

Fitting benchmark parameters:

- ttH signal strength, $\mu_{ttH} = \sigma_{ttH} / \sigma^{SM}_{ttH}$
- ★ tt+≥ lb and tt+≥ lc normalizations left free floating in the fit
- Nuisance parameters from systematic uncertainties included in the fit model
- Excellent data/MC prediction agreement in postfit yields
 - remaining differences covered by the total uncertainties

Pre/post fit distributions in single lepton

Pre-fit Pre/post fit distributions in dilepton lepton

Systematic uncertainties

Uncertainty source	$\Delta \mu$		
$tt + > 1b \mod$	+0.46	-0.46	
Background-model stat. unc.	+0.29	-0.31	
b-tagging efficiency and mis-tag rates	+0.16	-0.16	
Jet energy scale and resolution	+0.14	-0.14	
$t\bar{t}H ext{ modeling}$	+0.22	-0.05	
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11	
JVT, pileup modeling	+0.03	-0.05	
Other background modeling	+0.08	-0.08	
$t\bar{t} + \text{light modeling}$	+0.06	-0.03	
Luminosity	+0.03	-0.02	
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04	
Total systematic uncertainty	+0.57	-0.54	
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10	
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03	
Intrinsic statistical uncertainty	+0.21	-0.20	
Total statistical uncertainty	+0.29	-0.29	
Total uncertainty	+0.64	-0.61	

Analysis is largely systematicslimited (~62% total uncertainty on the ttH signal strength)

- $\bullet \quad \text{main source is } \mathsf{tt}^+ \ge \mathsf{Ib} \ \mathsf{modeling}$
- large contributions on available
 Monte Carlo statistics
 - mostly relevant for the largest systematics uncertainties (tt+≥1b)
- experimental uncertainties contributing less, b-tagging and jet energy scale/resolution
- Work ongoing to reduce the dominant tt+HF uncertainty
 - data-driven approaches to estimate tt+HF component
 - SM g→bb cross section measurement

Systematic uncertainties (2)

- Leading source of systematic uncertainties from tt+≥1b modelling (two-point systematics)
 - comparisons of various generators wrt nominal sample (Sherpa5F and Sherpa4F vs nominal)
 - characterization of parton shower, hadronization modeling and ISR/FSR components in Powheg+Pythia8
- Relatively large impact on ttH signal uncertainty (parton shower and hadronization model)
- Dominant experimental systematics on btagging relatively small
- Some constraints of major nuisance parameters testify larger variations than those observed in data
- Minor "pulls" of uncertainties from nominal values due to imperfect data/MC modeling

tth combination: results

 $1.2 \ ^{+0.3}_{-0.3}$

Combined

 $1.0 \ ^{+0.3}_{-0.3}$

 4.2σ

 3.8σ

ttH combination: uncertainties

Combined ttH measurement is systematics-limited ($H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$ still limited by data statistics)

- ▶ most of the uncertainty comes from tt+HF modeling in $H \rightarrow bb$ (20% of the total uncertainty) and ttH signal modeling for $H \rightarrow bb$ and $H \rightarrow Multilepton$ (9% of the total uncertainty)
 - simulation statistics is still an issue for both channels

experimental uncertainties are mostly dominated by jet energy scale and jet-flavour tagging

tt modeling in $H \rightarrow bb$ analysis $+0.15 -0.14$ ttH modeling (cross section) $+0.13 -0.06$ Non-prompt light-lepton and fake τ_{had} estimates $+0.09 -0.09$ Simulation statistics $+0.08 -0.07$ Jet energy scale and resolution $+0.08 -0.07$ $t\bar{t}V$ modeling $+0.07 -0.07$ $t\bar{t}H$ modeling (acceptance) $+0.07 -0.04$ Other non-Higgs boson backgrounds $+0.05 -0.05$ Other experimental uncertainties $+0.05 -0.04$ Luminosity $+0.03 -0.02$ Modeling of other Higgs boson production modes $+0.01 -0.01$ Total systematic uncertainty $+0.19 -0.19$ Total uncertainty $+0.34 -0.30$	Uncertainty Source	Δ	μ	
$t\bar{t}H$ modeling (cross section) $+0.13$ -0.06 Non-prompt light-lepton and fake τ_{had} estimates $+0.09$ -0.09 Simulation statistics $+0.08$ -0.08 Jet energy scale and resolution $+0.08$ -0.07 $t\bar{t}V$ modeling $+0.07$ -0.07 $t\bar{t}H$ modeling (acceptance) $+0.07$ -0.04 Other non-Higgs boson backgrounds $+0.06$ -0.05 Other experimental uncertainties $+0.05$ -0.05 Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	$t\bar{t}$ modeling in $H \to b\bar{b}$ analysis	+0.15	-0.14	
Non-prompt light-lepton and fake τ_{had} estimates $+0.090.09$ Simulation statistics $+0.08 - 0.08$ Jet energy scale and resolution $+0.08 - 0.07$ $t\bar{t}V$ modeling $+0.07 - 0.07$ $t\bar{t}H$ modeling (acceptance) $+0.07 - 0.04$ Other non-Higgs boson backgrounds $+0.05 - 0.05$ Other experimental uncertainties $+0.05 - 0.04$ Jet flavor tagging $+0.03 - 0.02$ Modeling of other Higgs boson production modes $+0.01 - 0.01$ Total systematic uncertainty $+0.27 - 0.23$ Statistical uncertainty $+0.19 - 0.19$	$t\bar{t}H$ modeling (cross section)	+0.13	-0.06	
Simulation statistics $+0.08$ -0.08 Jet energy scale and resolution $+0.08$ -0.07 $t\bar{t}V$ modeling $+0.07$ -0.07 $t\bar{t}H$ modeling (acceptance) $+0.07$ -0.04 Other non-Higgs boson backgrounds $+0.06$ -0.05 Other experimental uncertainties $+0.05$ -0.04 Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.34$ -0.30	Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09	
Jet energy scale and resolution $+0.08 -0.07$ $t\bar{t}V$ modeling $+0.07 -0.07$ $t\bar{t}H$ modeling (acceptance) $+0.07 -0.04$ Other non-Higgs boson backgrounds $+0.06 -0.05$ Other experimental uncertainties $+0.05 -0.05$ Luminosity $+0.05 -0.04$ Jet flavor tagging $+0.03 -0.02$ Modeling of other Higgs boson production modes $+0.01 -0.01$ Total systematic uncertainty $+0.27 -0.23$ Statistical uncertainty $+0.34 -0.30$	Simulation statistics	+0.08	-0.08	
$t\bar{t}V$ modeling $+0.07$ -0.07 $t\bar{t}H$ modeling (acceptance) $+0.07$ -0.04 Other non-Higgs boson backgrounds $+0.06$ -0.05 Other experimental uncertainties $+0.05$ -0.05 Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19	Jet energy scale and resolution	+0.08	-0.07	
$t\bar{t}H$ modeling (acceptance) $+0.07$ -0.04 Other non-Higgs boson backgrounds $+0.06$ -0.05 Other experimental uncertainties $+0.05$ -0.05 Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	$t\bar{t}V$ modeling	+0.07	-0.07	
Other non-Higgs boson backgrounds $+0.06$ -0.05 Other experimental uncertainties $+0.05$ -0.05 Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19	$t\bar{t}H$ modeling (acceptance)	+0.07	-0.04	
Other experimental uncertainties $+0.05$ -0.05 Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	Other non-Higgs boson backgrounds	+0.06	-0.05	Large reduction on t
Luminosity $+0.05$ -0.04 Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19 Total systematic uncertainty $+0.34$ -0.30	Other experimental uncertainties	+0.05	-0.05	+HF uncertainty in
Jet flavor tagging $+0.03$ -0.02 Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	Luminosity	+0.05	-0.04	H→bb final state
Modeling of other Higgs boson production modes $+0.01$ -0.01 Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	Jet flavor tagging	+0.03	-0.02	needed to achieve
Total systematic uncertainty $+0.27$ -0.23 Statistical uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	Modeling of other Higgs boson production modes	+0.01	-0.01	better precision!
Statistical uncertainty $+0.19$ -0.19 Total uncertainty $+0.34$ -0.30	Total systematic uncertainty	+0.27	-0.23	
Total uncertainty $\pm 0.34 \pm 0.30$	Statistical uncertainty	+0.19	-0.19	
$\pm 0.54 \pm 0.50$	Total uncertainty	+0.34	-0.30	

Search for ttH($H \rightarrow bb$) in ATLAS with 2015+2016 Run 2 data at LHC

- observed signal significance 1.4σ
- measurement is dominated by the tt+HF (especially $tt+\geq Ib$) uncertainty

b-tagging is a fundamental tool to achieve excellent performance in reconstruction and identification of b-jets in the physics analysis

 several improvements and new features contribute in large gain in background rejection and signal efficiency

Evidence of the ttH process (4.2 σ observed) when combining ttH(H \rightarrow bb), ttH(H \rightarrow Multilepton), H $\rightarrow \gamma\gamma$, H \rightarrow ZZ (ttH-enriched categories)

Search for ttH($H \rightarrow bb$) in ATLAS with 2015+2016 Run 2 data at LHC

- observed signal significance 1.4σ
- measurement is dominated by the tt+HF (especially $tt+\geq Ib$) uncertainty

b-tagging is a fundamental tool to achieve excellent performance in reconstruction and identification of b-jets in the physics analysis

 several improvements and new features contribute in large gain in background rejection and signal efficiency

Evidence of the ttH process (4.2 σ observed) when combining ttH(H \rightarrow bb), ttH(H \rightarrow Multilepton), H $\rightarrow\gamma\gamma$, H \rightarrow ZZ (ttH-enriched categories) $\Box\Box\Box$

...looking ahead for the ttH observation with the final 2015-2018 Run 2 data!

Search for ttH($H \rightarrow bb$) in ATLAS with 2015+2016 Run 2 data at LHC

- observed signal significance 1.4σ
- measurement is dominated by the tt+HF (especially $tt+\geq Ib$) uncertainty

b-tagging is a fundamental tool to achieve excellent performance in reconstruction and identification of b-jets in the physics analysis

 several improvements and new features contribute in large gain in background rejection and signal efficiency

Evidence of the ttH process (4.2 σ observed) when combining ttH(H \rightarrow bb), ttH(H \rightarrow Multilepton), H \rightarrow yy, H \rightarrow ZZ (ttH-enriched categories) $\square\square$

...looking ahead for the ttH observation with the final 2015-2018 Run 2 data!

Thank you for your altention!

Additional slides

F.	loose L isolated		$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{\rm had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{ m had}$
L*	L' with non-	Light lepton	$2T^*$	$1L^*, 2T^*$	2L, 2T	1T	$2T^*$	$2\mathrm{L}^{\dagger}$	$1L^{\dagger}, 2T$
м	prompt clean. medium	$ au_{ m had}$	$0\mathbf{M}$	0 M	_	1T, 1M	1M	$1\mathrm{M}$	1M
T	tight	$N_{ m jets},N_{b- m jets}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	$\geq 4, \geq 1$	$\geq 3, \geq 1$	$\geq 2, \geq 1$
1.	very tight								

tth(H->ZZ*, WW*, ττ) - backgrounds

- Prompt-leptons or T-jets estimated from MC
 - irreducible: ttW, ttZ and diboson
- Electron charge misidentification
 - data-driven estimate from misidentification rate in $Z \rightarrow e+e-vs Z \rightarrow e+e+/Z \rightarrow e-e-$
- Fake or non-prompt light leptons
 - semileptonic b-hadron decays and photon conversions
 - data-driven estimation
- Fake hadronic taus
 - light-flavour jets and electron misidentified as taus
 - data-driven estimation in CR; extrapolation to SR
- New important reconstruction techniques
 - lepton reconstruction
 - BDT to mitigate charge misidentification
 - BDT to mitigate non-prompt e/μ

 $EEH(H \rightarrow ZZ^*, WW^*, \tau \tau) - files$

8 signal regions and 4 control regions treated with BDT shape or 1-bin (BDT trained against dominant background of a given region)

Uncertainty Source	$\Delta \mu$		
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09	
Jet energy scale and resolution	+0.18	-0.15	
Non-prompt light-lepton estimates	+0.15	-0.13	
Jet flavor tagging and τ_{had} identification	+0.11	-0.09	
$t\bar{t}W$ modeling	+0.10	-0.09	
$t\bar{t}Z$ modeling	+0.08	-0.07	
Other background modeling	+0.08	-0.07	
Luminosity	+0.08	-0.06	
$t\bar{t}H \mod$ (acceptance)	+0.08	-0.04	
Fake τ_{had} estimates	+0.07	-0.07	
Other experimental uncertainties	+0.05	-0.04	
Simulation sample size	+0.04	-0.04	
Charge misassignment	+0.01	-0.01	
Total systematic uncertainty	+0.39	-0.30	

Deep Learning

• Exploits the advantage of multivariate techniques with multiple output nodes - exploited for b-c tagging

Jelfiller

- Rejection of tracks from pile-up by applying a box cut on Sd0 vs Sz0 of JF tracks
 - large mitigation of performance degradation in high pile up environment
 - studies with dedicated high pile-up samples with μ =60, 80

IPTag (4) - main changes compared to rel20.1

- I. Requirement on the number of pixel hits relaxed from at least 2 to at least 1 (no inefficiencies in the high b-jet pt region)
- 2. Ignoring tracks from conversions, Ks, A and material interactions (SV output) →sizable gain in performance achieved (15% on light rejection @77%b-jet efficiency)
- Reference histograms produced with a mixture of Z'→ttbar and ttbar for categories with no hits in IBL and b-layer (0 and 1)

c-tagging

- Discrimination of c from b/light is very important for several physics studies
- Discrimination exploited by the topology and the kinematics of the displaced vertex reconstructed JetFitter two taggers provided, MV2c100 (b/c discrimination), MV2c1100 (b/l discrimination)

Variable Name	Description
L _{xyz}	Three-dimensional displacement of secondary vertex from the primary vertex
$L_{\rm xy}$	Transverse displacement of the secondary vertex
$Y_{trk}^{min}, Y_{trk}^{max}, Y_{trk}^{avg}$	Min, Max and Avg. track rapidity of tracks in jet
$Y_{\text{trk}}^{\min}, Y_{\text{trk}}^{\max}, Y_{\text{trk}}^{\text{avg}}$ (2 nd vtx)	Min, Max and Avg. track rapidity of tracks at secondary vertex
m	Invariant mass of tracks associated to secondary vertex
E	Energy of charged tracks associated to secondary vertex
f_E	Energy fraction of charged tracks (from all tracks in the jet)
	associated to secondary vertex
Ntrk	Number of tracks associated to the secondary vertex

Algorithm training samples (2)

- New hybrid sample used for training of high level tagger algorithms
 - similar algorithm performance at low pt but significantly larger rejections at high pt

HE fit

mbb

Systematic sources

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t}+\geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalization	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalization	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	$MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)$	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. POWHEG+PYTHIA 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (MSTW)$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ UE	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalization	Up or down by 50%	$t\bar{t} + \geq 1b$