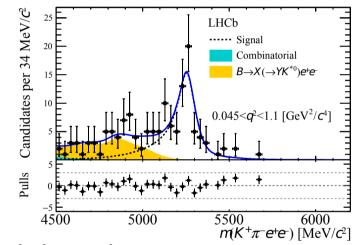
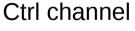
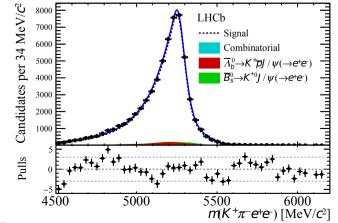
Journée thématiques Particules - Accélérateurs

LHCb

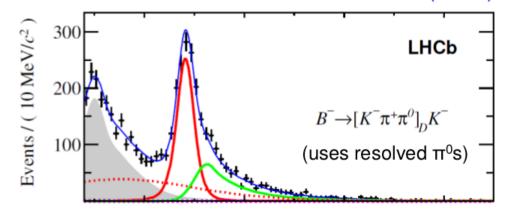

Laboratoire de l'Accélérateur Linéaire


F. Machefert Tuesday 6th March, 2018


Why should we improve our calorimeter

- We already produced very nice results with electrons, photons, π^0
 - The present detector is working $\frac{\delta E}{E} = \frac{S}{\sqrt{E}} \oplus C \oplus \frac{N}{E}$ الصرير

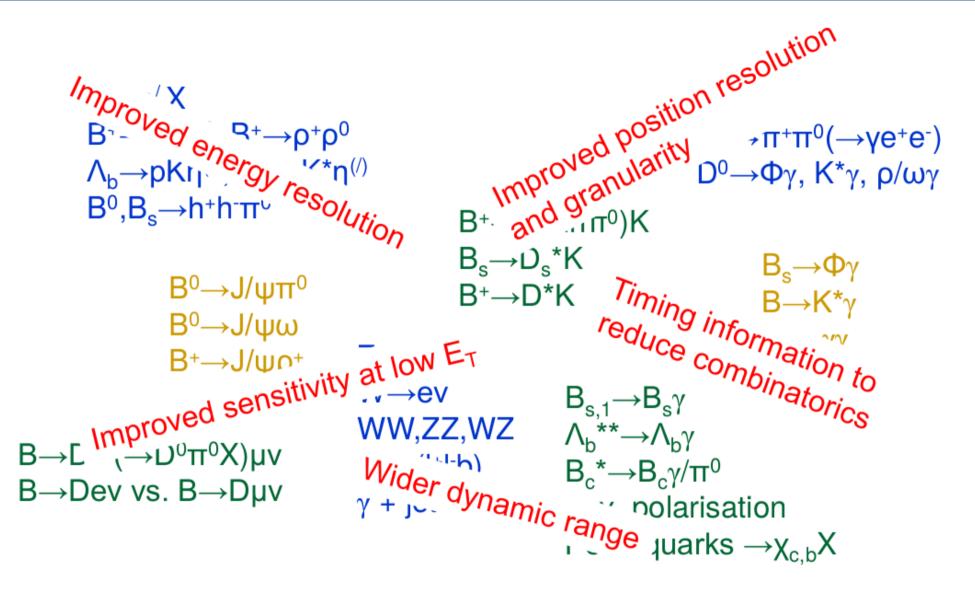
	VV CII	
RK*	low a ² region	



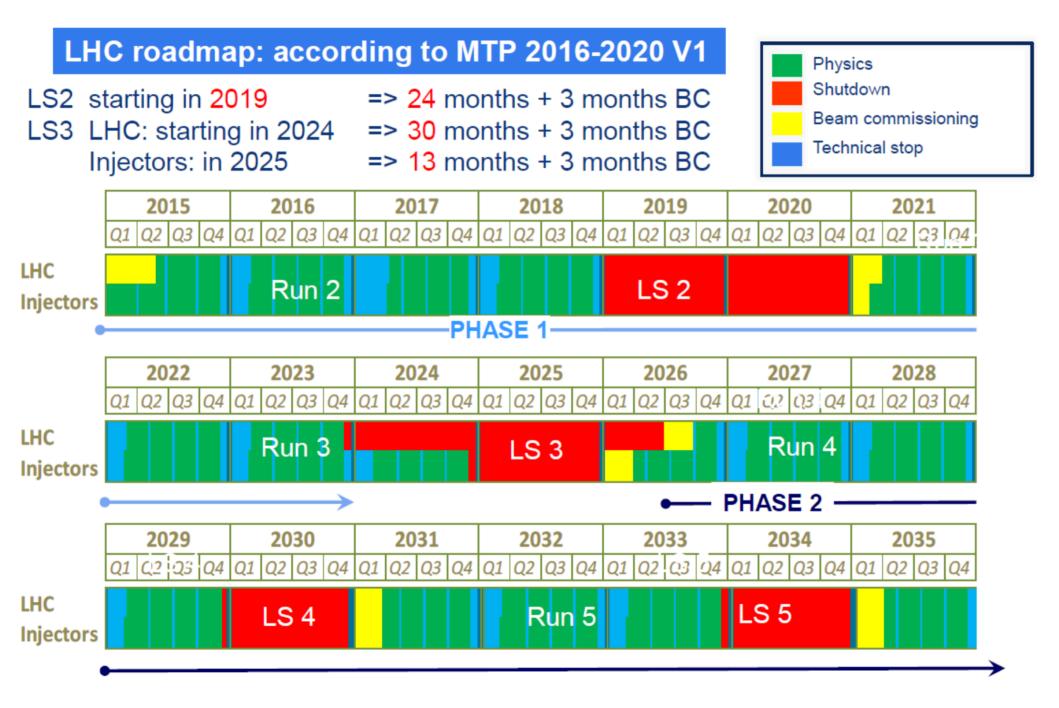
		S [GeV ^{1/2}]	С	N [MeV]	Material
J	LHCb	~10%	~0.8%	~10-20	~1X0
	ATLAS	10-12%	~0.2%	~250	~0.5 -1 .5 X ₀
	CMS	3-6%	~0.5%	200-600	~0.5 - 2.0 X ₀

Some of the new high profile channels rely on the calorimeter reconstruction

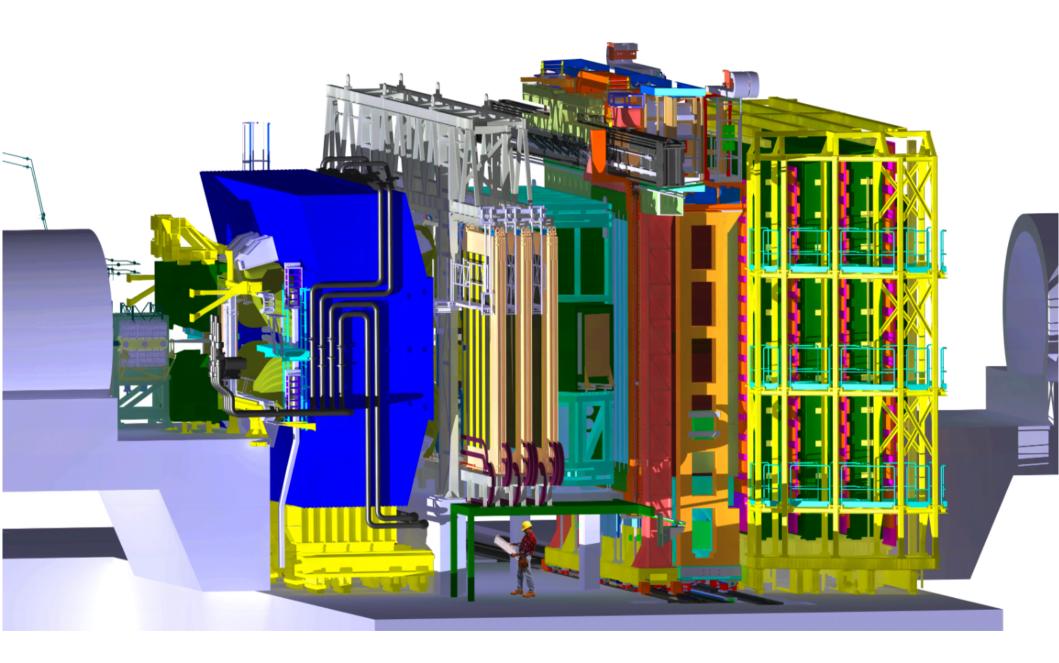
- Lepton universality tests
- $π^0$, η final states
- Rares decays with photons, electrons
- Exotics


Charm physics, etc... PRD 91 (2015) 112014

 $B \rightarrow n^{/} X$ D⁰→eµ $B^+ \rightarrow K^+ \pi^0$, $B^+ \rightarrow \rho^+ \rho^0$ $D^+ \rightarrow \pi^+ \pi^0 (\rightarrow \gamma e^+ e^-)$ $\Lambda_{\rm b} \rightarrow p K \eta^{(\prime)}, B^0 \rightarrow K^* \eta^{(\prime)}$ $D^0 \rightarrow \Phi \gamma$, $K^* \gamma$, $\rho / \omega \gamma$ $B^0, B_c \rightarrow h^+h^-\pi^0$ $B^+ \rightarrow D(hh\pi^0)K$ $B_s \rightarrow D_s^* K$ $B_{s} \rightarrow \Phi \gamma$ $B^0 \rightarrow J/\psi \pi^0$ $B^+ \rightarrow D^*K$ $B \rightarrow K^* \gamma$ $B^0 \rightarrow J/\psi \omega$ $B_s \rightarrow \gamma \gamma$ Z→e⁺e⁻ $B^+ \rightarrow J/\psi \rho^+$ B→K*e+e-W→ev $B_{s,1} \rightarrow B_s \gamma$ WW,ZZ,WZ $\Lambda_{\rm b}^{**} \rightarrow \Lambda_{\rm b} \gamma$ $B \rightarrow D^{**} (\rightarrow D^0 \pi^0 X) \mu v$ Top (l+l-b) $B_c^* \rightarrow B_c \gamma / \pi^0$ $B \rightarrow Dev vs. B \rightarrow D\mu v$ γ + jet χ_c, χ_b polarisation

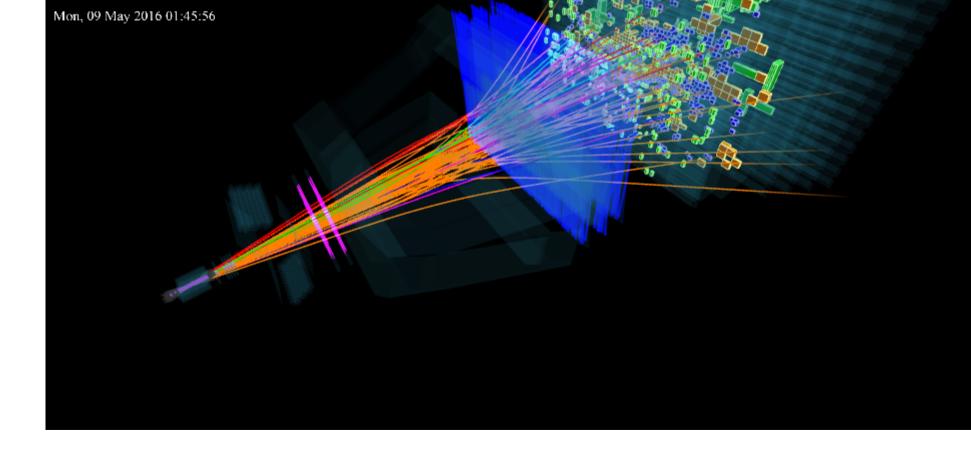

Pentaquarks $\rightarrow \chi_{c,b} X$

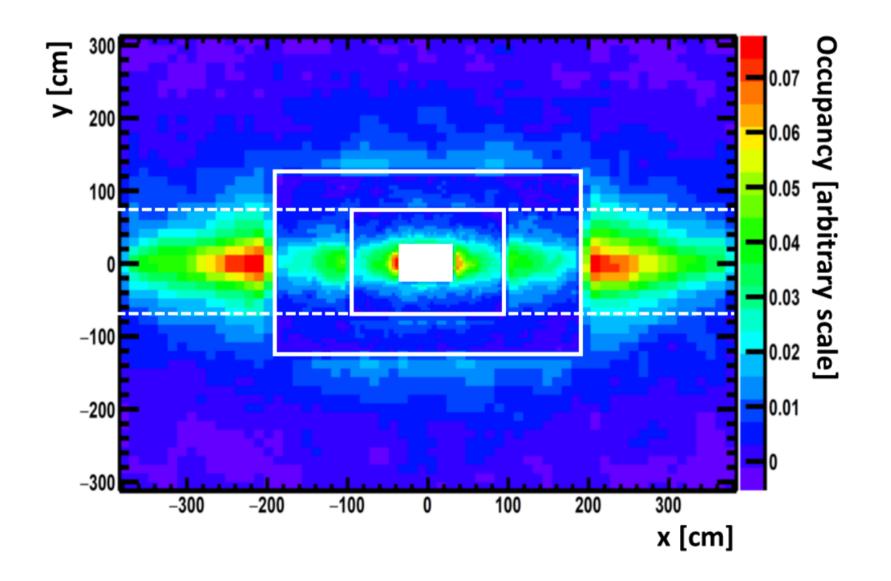
Why should we improve our calorimeter



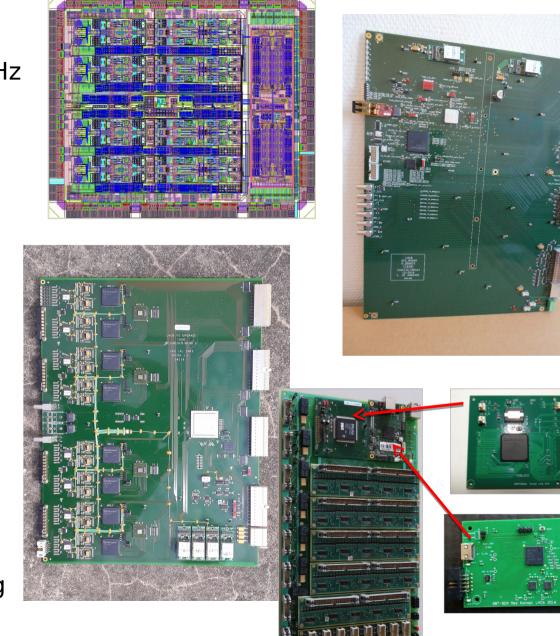
 Constraints from the physics groups are often different and sometimes contradictory...

Schedule of the LHC up to 2035

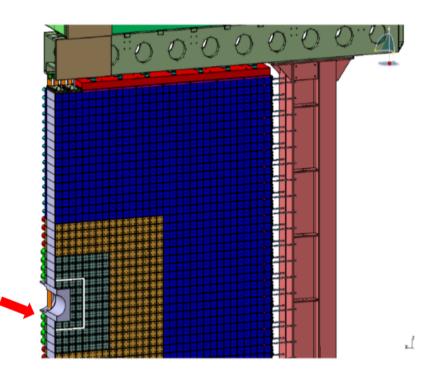

The LHCb detector


Typical event

Event 74374790 Run 173768 Mon. 09 May 2016 01:45:5


Detector occupancy

LS2 activities


The plan for the LS2 is

- Keep the PMT after a x5 gain reduction and perform a 40MHz readout
- Requires a new electronics
 - New Analog chip (ICECAL)
 - New FEB (300 boards)
 - New Control boards
 - Re-design of part of the HV, calibration, monitoring elect.
- New reconstruction adapted to the larger occupancy
- Dismantling of the SPD,
 PS and lead converter
 - Major, time-limited task
 - Done in parallel with installation/commissioning

LS3 baseline activities

 The other big activity planned for the future is the replacement of the modules in the innermost region of the ECAL (LS3)
 At present the "baseline" plan

- At present the "baseline" plan is to replace the innermost region of the inner part of the calorimeter
 - "The performances should remain satisfactory up to 2.5Mrad" (~ cte term ~<3%)
 - \rightarrow 20fb⁻¹ or ~2023 according to the TDR
- We have the 32 spare modules
- 3 months should be enough to perform the operation
- This requires "only" the dismantling of the columns of modules above the central region
 - Other intervention would require the dismantling of a large fraction of the calorimeter → long task

LHCb group at LAL

The physicists

Yasmine Amhis	CR	90 % (+10 % Solid)	
Sergey Barsuk	DR	70 %	
Francesco Bossu	Postdoc → départ 15 octobre 2107		
Joao Coelho	CR	100%	
Fabrice Desse	Doctorant (2017 → 2020)	100%	
Renato Quagliani	Doctorant (2014 → 2017)		
Jacques Lefrançois	Emerite \rightarrow fin Septembre 2017		
Vitalii Lisovskyi	Doctorant (2016 \rightarrow 2019 - Yasmine)	100 %	
Frédéric Machefert	DR	100 %	Doctorants
Victor Renaudin	Doctorant (2015 → 2018 - Guy)	100 %	Post-doc
Patrick Robbe	DR	100 %	Permanents
Marie-Hélène Schune	DR	100 %	
Achille Stocchi	Prof	Dir. LAL	
Andrii Usachov	Doctorant (2016 → 2019 - Sergey)	100 %	
Michael Winn	Postdoc	100 %	
Guy Wormser	DR	100 %	
Yanxi Zhang	Postdoc	100 %	

LHCb group at LAL

The engineers

Christophe Beigbeder	Responsable FEB upgrade calorimètres
David Chamont	Core software LHCb
Olivier Duarte	Responsable Carte Contrôle upgrade calorimètres
Hadrien Grasland	Core software LHCb
Guy Barrand	Maintenance event display
Pascal Rusquart	CAO Carte Contrôle upgrade calorimètres
Jean-Luc Socha	CAO Carte FEB upgrade calorimètres
Monique Taurigna	Développement Slow Ctrl/Readout upgrade calorimètres

Energy and position resolution

- We should reduce the transversal extension of the showers and reduce the size of the cells accordingly
 - It does not seem necessary to replace the full detector
 - The area the most affected by
 - Radiation, pile-up
 - and that
 - mostly contributes to the physics should be considered
 - Inner, extended outwards, and to the horizontal band ?
 - The addition of new frontiers should be avoided
- The new geometry should benefit from the modular present design
 - New modules of the size of a module (12cm x 12cm)
 - Easier integration with the modules kept
 - The modularity of the detector and the aimed Moliere radius pushes towards a "natural" 2x2 cm² cell size (36 cells per module)
- Can we implement some longitudinal stack readout ?
 - Different fibre lengths ?
 - Looks difficult...

Energy and position resolution

- The thickness of this new ECAL should be $\sim 25X_0$ to contain the Electromagnetic shower
 - A denser absorber means a thinner detector in the newly instrumented region
- Full projectivity is not feasible → would require many different modules
 - Can we integrate some projectivity in the horizontal plane ?
 - Requires a full replacement of the band
- What technology to use ?
 - Absorber has probably to be based on Tungsten
 - Different types of tungsten alloy absorbers
 - Signal collection:
 - Scintillator and fibres(?) readout by PMT/SiPM
 - Silicon detector
 - Very expensive
 - Could be used in a "hybrid" detector (few layers only) for
 - ultra-precise position measurement
 - time measurement (see later)

Energy and position resolution

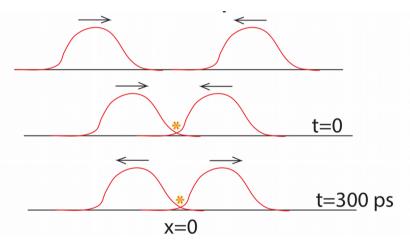
- The effect of the position resolution is often underestimated
 - Neutral pion case
 - The energy resolution is assumed to be $\frac{\sigma(E)}{E} = \frac{\sigma_s}{\sqrt{E[GeV]}} \oplus \sigma_c$

$$\oplus 1\%/(E[GeV] \times \sin \theta)$$

- The extra (electronic noise) contribution is supposed to be negligible
- Two situations:

1. The position comes from the energy of the cells (cluster)

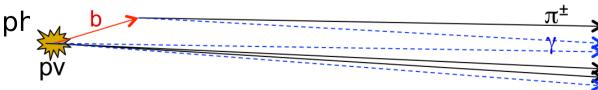
2. The position is given from an external device (Si layers ?)


Perfect spatial knowledge

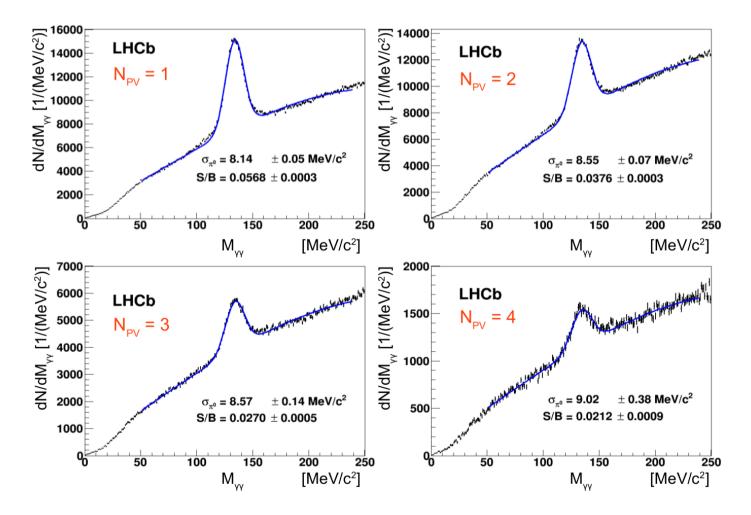
Spatial information			Perfect s	patial
from clusters			knowle	dge
σ_C			σ_0	7
σ_S	1%	2%	1%	2%
7%	7.5	8.2	4.2	5.2
10%	8.5	9.3	5.5	6.5
15%	10.5	11.3	8.0	8.9

 Neutral pion resolution in MeV: would go down from 9 to 6 MeV

Time information


- To reduce shower overlap, one possibility consists in increasing the granularity (should also reduce the Moliere radius...)
- Background and combinatorics reductions can be achieved by using a new dimension → time
 - Ex:
 - 300 ps for beams to cross each other
 - Assuming 10 int/xing \rightarrow 20 ps between collision (gauss. Distr.)

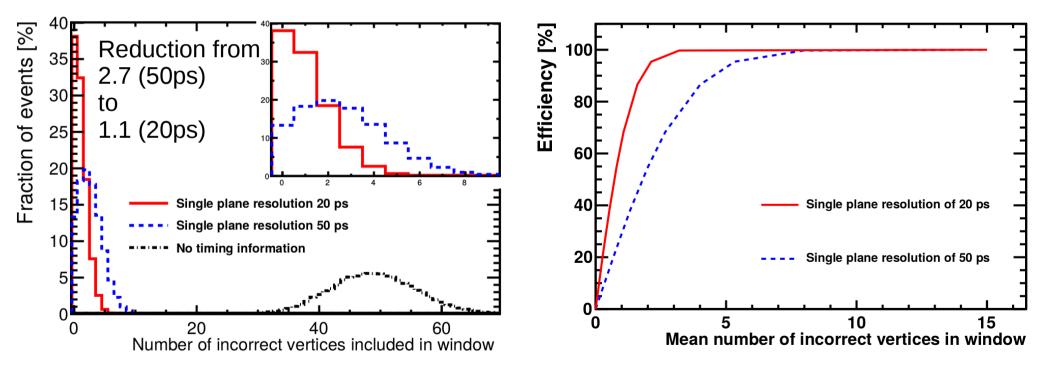
• Strategy :


1) Sort the charged particles to the PV (timing info)

2) Associate the photons to the charged tracks (highly relativistic)

Disentangling the primary vertices

- The effect of the number of primary vertices is already obvious in the present reconstruction
 - Run 2 minimum bias data split wrt the number of PV
 - The selection applied is $p_T(\gamma) > 300 \text{MeV/c}$ and $p_T(\pi^0) > 550 \text{MeV/c}$



Disentangling the primary vertices

Assuming

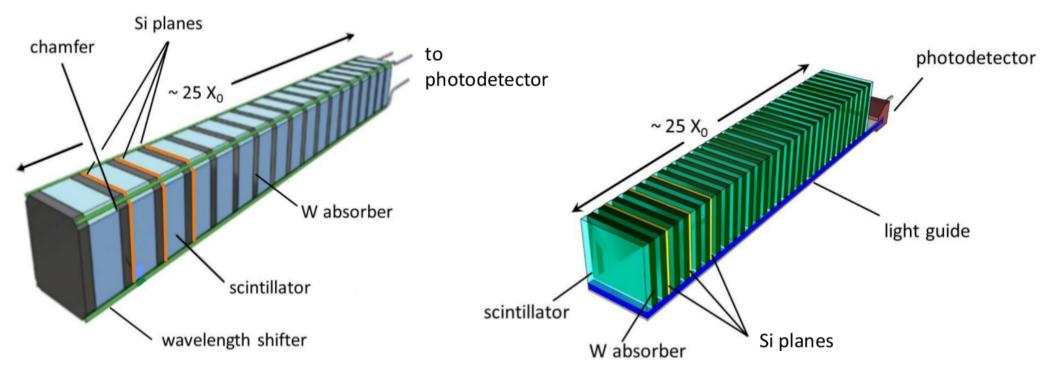
- 50 interactions per crossing and simulating temporal/spatial distribution of the interactions
- The introduction of 3 layers of Si planes with precision of
 - 50ps or 20ps each
- Take a one-sigma window around arrival times corresponding to the interaction of interest

Estimates the wrong vertices included in the time window

- Could the fast-time be done from the measurement of the start of the shower of the incoming photons
 - The PRS lead converter could be used for this purpose...

Frédéric Machefert

Dose in the ECAL

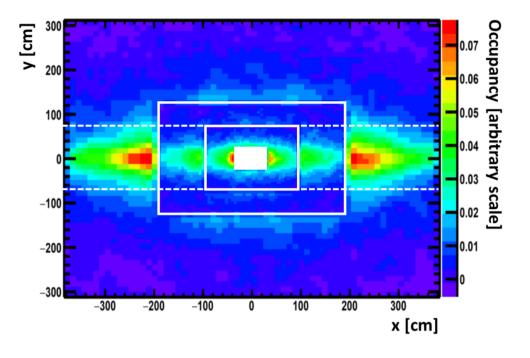

Dose in the innermost region after 300fb⁻¹

Here, a safety factor x4 is added in the calculation x2 simulation x2 SPD/PS

Maybe a bit pessimistic ?

- The dose is particularly important in the inner region but decreases rapidly with the distance to the beam
 - Essentially the innermost cells will suffer
 - This region is also the most occupied one
 - Can we regularly replace this zone if a sufficiently radtol solution is not found ? will probably be the case...
 - Notice that the present coverage of the ECAL in the inner region is smaller than the tracking coverage. We sometime lose efficiency in the ECAL (bremstrahlung reconstruction in the inner region, ...)

Possible designs

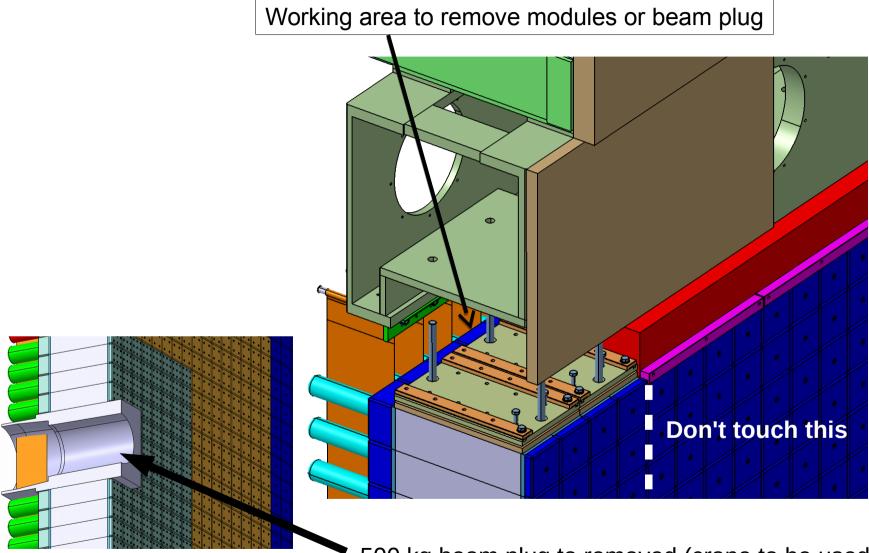


Inspired from CMS R&D

Fibre are replaced by light guides

For mechanical constraints and because of the present module geometry, it would probably be advantageous to have absorber plates of 12x12 cm² To be studied further

Overall geometry

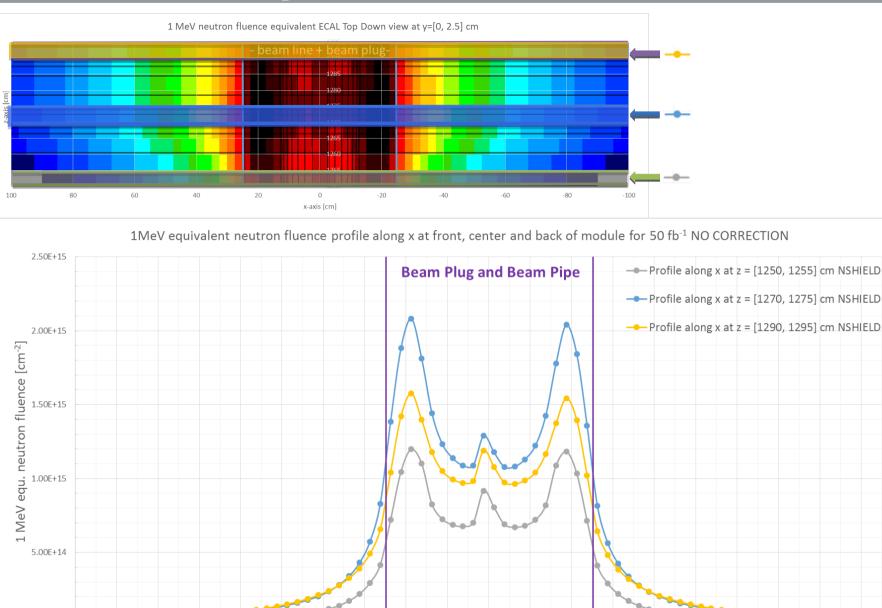

- It is difficult to replace the full detector surface, but we could imagine some intermediate solution
 - Replace the inner region with fast-timing and good spatial resolution (Si layers) for the LS3 ?
 - 176 modules would be needed
- The removed innermost cells which are still in specifications could be re-deployed in the middle region
- In turn, the middle region modules would replace some outer ones
- This could be done in higher priority in the horizontal band which is also affected by the magnetic field
 - 50% of the photons from a neutral pion produced by a b-hadron (single π^0 final state) fall into this horizontal band
- Those last steps would require a full dismantling of the calorimeter. Difficult to do during the LS3 ?

Some comments

- The main usage of the HCAL is to give an input to the hardware trigger and the LLT for the upgrade to come
 - HCAL would not be so much needed after for an upgrade phase II
- Can we test a new technology already during LS3 ?
 - The baseline is to replace the innermost cells with spare modules
 - Could we think of using "improved" modules instead ?
- The technology used should be mature regarding
 - The timescale of the project
 - The human ressources that can contribute
- An estimation of the cost should be done early in order to determine the feasibility of the project

Tuesday 6th March 2018

Replacement of the central cells


500 kg beam plug to removed (crane to be used)

1 MeV neutron equivalent fluence - 50fb⁻¹@14 TeV

- In term of 1 MeV neutron equivalent fluence, the maximum value which is reached is 1.1x10¹⁵ cm⁻²
- But the calculation does not include any safety factor
 - The usual recipe consists in having a x2 factor safety

1 MeV neutron equivalent fluence - 50fb⁻¹@14 TeV

0.00E+00

-100

-10

0

x [cm]

10

20

30

40

60

70

80

90

100

50

40

-50

.70

-30

-20

Example of CMS Shashlik : Tungsten + LYSO

Choices for absorber, active layers, sizes

A. Ledovskoy

Aim at small effective Moliere radius to mitigate high occupancy from pileup

- Absorber layers = tungsten (R_M =9.3 mm)
- Try not to inflate R_M too much with active layers \rightarrow scintillator with high light output

Scintillator = LYSO(Ce)

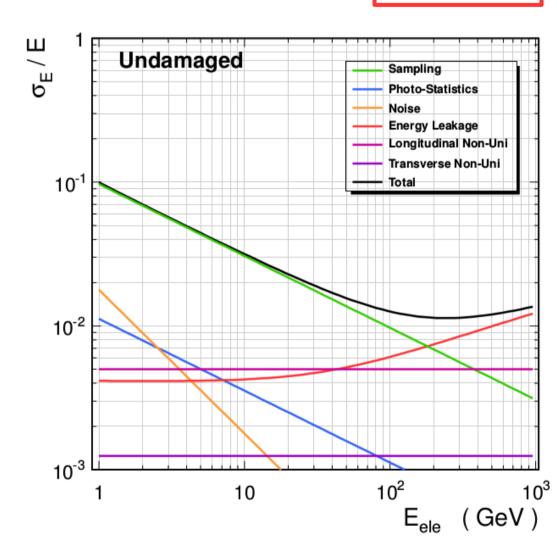
- Hight brightness (30000 photons/MeV)
- Decay time ~40 ns
- Blue / Violet emission

Layers / Cells Dimensions

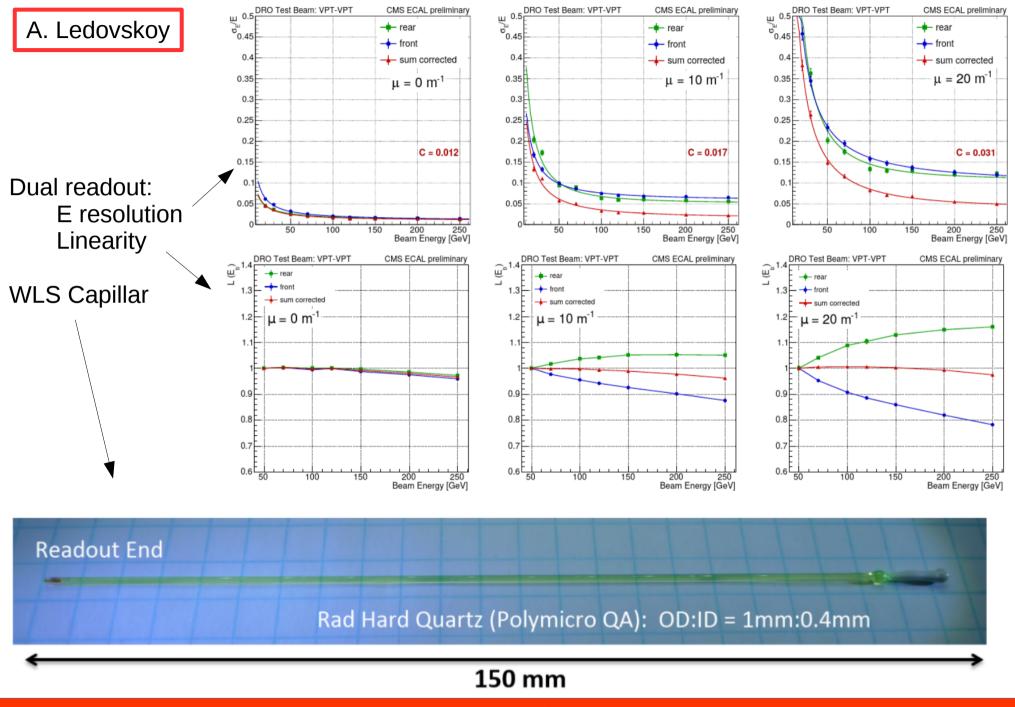
- Tungsten = 2.5 mm thick
- LYSO = 1.5 mm thick
- Effective $R_M = 14 \text{ mm}, X_0 = 4.8 \text{ mm}$
- Cell transverse dimensions 14×14 mm²

Sampling fluctuations: 10%/ \sqrt{E}

Example of CMS Shashlik : Tungsten + LYSO


Expected EM energy resolution

A. Ledovskoy


Simulations with Geant4 and optical photon transport (SLitrani) Without radiation damage

Comments

- Energy leakage can be fixed by increasing number of layers
- Transverse non-uniformity assumes "imperfect" corrections. Depends on the angle.

Example, CMS Shashlik

Frédéric Machefert