from an astrophysical point of view:

- sources
- acceleration mechanism

2/ What are the key observations needed to make progress field of UHECR and related UHE neutrino physics?

from an astrophysical point of view:

- sources
- acceleration mechanism

2/ What are the key observations needed to make progress field of UHECR and related UHE neutrino physics?

b observation of UHE (>10¹⁷ eV) neutrinos from a coincidentally detected (transient) source

from an astrophysical point of view:

- sources
- acceleration mechanism

2/ What are the key observations needed to make progress field of UHECR and related UHE neutrino physics?

observation of UHE (>10¹⁷ eV) neutrinos from a coincidentally detected (transient) source
 UHE neutrino data (spectrum, arrival directions, flavors)

from an astrophysical point of view:

- sources
- acceleration mechanism

2/ What are the key observations needed to make progress field of UHECR and related UHE neutrino physics?

b observation of UHE (>10¹⁷ eV) neutrinos from a coincidentally detected (transient) source

UHE neutrino data (spectrum, arrival directions, flavors)

EeV neutrino astronomy

from an astrophysical point of view:

- sources
- acceleration mechanism

2/ What are the key observations needed to make progress field of UHECR and related UHE neutrino physics?

observation of UHE (>10¹⁷ eV) neutrinos from a coincidentally detected (transient) source

UHE neutrino data (spectrum, arrival directions, flavors)

EeV neutrino astronomy

UHECR spectral shape (acceleration mechanism + Emax)

from an astrophysical point of view:

- sources
- acceleration mechanism

2/ What are the key observations needed to make progress field of UHECR and related UHE neutrino physics?

b observation of UHE (>10¹⁷ eV) neutrinos from a coincidentally detected (transient) source

UHE neutrino data (spectrum, arrival directions, flavors)

EeV neutrino astronomy

UHECR spectral shape (acceleration mechanism + Emax)

UHECR sources (clusters)

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

Talks on Tuesday morning (Kimura, Decoene, Guépin —> neutrino production in various sources)

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

> a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

Talks on Tuesday morning (Kimura, Decoene, Guépin —> neutrino production in various sources)

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

Talks on Tuesday morning (Kimura, Decoene, Guépin —> neutrino production in various sources)

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

production in various sources)

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

if measured **UHECR composition** heavy **UHE neutrino astronomy** completely possible

production in various sources)

sources emitting observable UHECRs and UHE neutrinos are likely not the same!

▶ a source will be opaque to UHECR protons to produce abundant UHE neutrinos

- **observable** UHE (>10¹⁷ eV) neutrino sources are sources of UHECRs
- **but they are likely NOT observable sources of UHECRs!**

if measured **UHECR composition** heavy **UHE neutrino astronomy** completely possible

> not really related

production in various sources)

Can we hope to detect very high-energy neutrino sources?

Neutrinos don't have a horizon: won't we be polluted by background neutrinos?

boxes for experiments assuming neutrino flux: 10⁻⁸ GeV cm⁻² s⁻¹

What we can aim to do with future observatories

What we can aim to do with future observatories

cosmogenic: guaranteed

direct from source: likely more abundant

pessimistic scenarios of cosmogenic neutrinos = good!

low background for source neutrinos talk by Heinze Tuesday PM

The Giant Radio Array for Neutrino Detection

http://grand.cnrs.fr/

Kumiko Kotera

Institut d'Astrophysique de Paris

UHECR 2018 Paris 12/10/2018

> astronomy possible only with a **giant array**

astronomy possible only with a giant array

> affordable giant array possible with **radio** detection of **inclined** air-showers

astronomy possible only with a giant array

> affordable giant array possible with **radio** detection of **inclined** air-showers

> goal of GRANDProto300: demonstrate **autonomous** radio detection of inclined air-showers

astronomy possible only with a giant array

▶ affordable giant array possible with **radio** detection of **inclined** air-showers

b goal of GRANDProto300: demonstrate **autonomous** radio detection of inclined air-showers

If this works, in principle, radio alone could suffice to do EeV neutrino astronomy (cheaper + avoid difficulties related to other detection techniques) but hybrid detection could be implemented in subset arrays for richer data

astronomy possible only with a giant array

▶ affordable giant array possible with **radio** detection of **inclined** air-showers

b goal of GRANDProto300: demonstrate **autonomous** radio detection of inclined air-showers

▶ if this works, in principle, radio alone could suffice to do EeV neutrino astronomy (cheaper + avoid difficulties related to other detection techniques) but hybrid detection could be implemented in subset arrays for richer data

beyond GRANDProto300, challenges are related to large arrays (e.g. communication, power supply): common to all other large-array projects

astronomy possible only with a giant array

▶ affordable giant array possible with **radio** detection of **inclined** air-showers

b goal of GRANDProto300: demonstrate **autonomous** radio detection of inclined air-showers

▶ if this works, in principle, radio alone could suffice to do EeV neutrino astronomy (cheaper + avoid difficulties related to other detection techniques) but hybrid detection could be implemented in subset arrays for richer data

beyond GRANDProto300, challenges are related to large arrays (e.g. communication, power supply): common to all other large-array projects

▶ in an ideal world, projects like the giant air-shower array (J. Hörandel), GCOS (R. Engel) and GRAND should work together to try to solve issues related to building giant arrays. In ~2025: we should see where/how we can get funding and merge everything...

A staged approach with self-standing pathfinders

Olivier's talk Friday morning

		GRANDProto300		
	GRANDProto3	5	GRAND10k	GRAND200k
	2018	2020	2025	203X
Goals	standalone radio array: test efficiency & background rejection	standalone radio array of very inclined showers $(\theta_z > 70^\circ)$ from cosmic rays (>10 ^{16.5} eV) + ground array to do UHECR astro/hadronic physics	first GRAND subarray, sensitivity comparable to ARA/ARIANNA on similar time scale, allowing discovery of EeV neutrinos for optimistic fluxes	first neutrino detection at 10 ¹⁸ eV and/or neutrino astronomy!
Setup	35 radio antennas 21 scintillators	 300 HorizonAntennas over 300 km² Fast DAQ (AERA+ GRANDproto35 analog stage) Solar panels (day use) + WiFi data transfer Ground array (a la HAWC/Auger) 	DAQ with discrete elements, but mature design for trigger, data transfer, consumption	200,000 antennas over 200,000 km², ~ 20 hotspots of 10k antennas, possibly in different continents Industrial scale allows to cut down costs: 500€/unit → 200M€ in total
Budget & stage	160k€, fully funded by NAOC+IHEP, deployment ongoing @ Ulastai	1.3 M€ to be deployed in 2020	1500€ / detection unit	ASIC Cost ~10M€ → few 10€/board Consomption < 1W Reliability

A staged approach with self-standing pathfinders

Olivier's talk Friday morning

	<	GRANDProto300	United Stand Thay Morthing	
	GRANDProto3	5	GRAND10k	GRAND200k
	2018	2020	2025	203X
Goals	standalone radio array: test efficiency & background rejection	standalone radio array of very inclined showers $(\theta_z > 70^\circ)$ from cosmic rays (>10 ^{16.5} eV) + ground array to do UHECR astro/hadronic physics	first GRAND subarray, sensitivity comparable to ARA/ARIANNA on similar time scale, allowing discovery of EeV neutrinos for optimistic fluxes	first neutrino detection at 10 ¹⁸ eV and/or neutrino astronomy!
Setup	35 radio antennas 21 scintillators	 300 HorizonAntennas over 300 km² Fast DAQ (AERA+ GRANDproto35 analog stage) Solar panels (day use) + WiFi data transfer Ground array (a la HAWC (Auger) 	DAQ with discrete elements, but mature design for trigger, data transfer, consumption	200,000 antennas over 200,000 km², ~ 20 hotspots of 10k antennas, possibly in different continents Industrial scale allows to cut down costs: 500€/unit
Budget & stage	160k€, fully funded by NAOC+IHEP, deployment ongoing @ Ulastai	1.3 M€ to be deployed in 2020	1500€ / detection unit	→ 200M€ in total ASIC Cost ~10M€ → few 10€/board Consomption < 1W Reliability

200,000 radio antennas over 200,000 km² ~20 hotspots of 10k antennas in favorable locations in China & around the world

200,000 radio antennas over 200,000 km² ~20 hotspots of 10k antennas

in favorable locations in China & around the world

- ✓ Radio environment: radio quiet
- ✓ Physical environment: mountains

300

- ✓ Access
- ✓ Installation and Maintenance
- ✓ Other issues (e.g., political)

GRANDProto300 survey

hotspot 1 2 10,000 km² GRAND used for simulations 300 km²

200,000 km²

Google Earth

Hage Landsat / Copernicus LS Dept of State Geographer 32018 Google

ata SIO, NOAA, U.S. Navy

several excellent sites already identified (~50 measurements)

2200 km

Legend

Surveyed sites

N

Radio environment measurements in China

Transient measurements 50-200MHz:

- For threshold beyond 5 x noise level, few transients left within ~20 seconds
- high trigger rates close to power line in zone 1

Frequency domain: very quiet beyond 30MHz

- How to collect data?
 - Optimised trigger (machine learning (?), see Führer et al. ARENA2018) to improve selection @ antenna level
 - Optimised informations to be transmitted to central DAQ
- How to identify air showers out of the ultra dominant background ?
 - Specific signatures of air shower radio signals vs background transients demonstrated (TREND offline selection algorithm:1 event out 10⁸ pass & final sample background contamination < 20%)
 - Improved setup (GRANDproto35, being deployed) should lead to even better performances
 - Deep learning techniques
- How well can we reconstruct the primary particle information
 - Simulations promising (similar performances as for standard showers) + deep learning technique

Need for an experimental setup to test and optimize techniques

GRANDProto300

- How to deploy and run 200,000 units over 200,000km²?
- How much will it cost? Who will pay for it?

go for industrial approach! answers to be studied at later stage

Simulated performances

~0.1-0.3° angular resolution for GP300 also achievable for Hotspot1

X_{max} resolution: < 40 g/cm² achievable for E>10¹⁹ eV with GP300 & further stages

radio-astronomy in a novel way

- unphased integration of signals: an almost fullsky survey of radio signals
- can detect FRBs and Giant Radio pulses of the Crab already at the GRANDProto300 stage

not really related

3/ What instrumental approach will be suited for what purpose, and what approaches should be supported by the community given the significant increase in cost per experiment?

▶ astronomy possible only with a **giant array**

▶ affordable giant array possible with **radio** detection of **inclined** air-showers

▶ goal of GRANDProto300: demonstrate **autonomous** radio detection of inclined air-showers

If this works, in principle, radio alone could suffice to do EeV neutrino astronomy (cheaper + avoid difficulties related to other detection techniques) but hybrid detection could be implemented in subset arrays for richer data

beyond GRANDProto300, challenges are related to large arrays (e.g. communication, power supply): common to all other large-array projects

▶ in an ideal world, projects like the giant air-shower array (J. Hörandel), GCOS (R. Engel) and GRAND should work together to try to solve issues related to building giant arrays. In ~2025: we should see where/how we can get funding and merge everything...