DIRECT MEASUREMENT OF THE MUON DENSITY IN AIR SHOWERS WITH THE PIERRE AUGER OBSERVATORY

SARAH MÜLLER^{1,2} FOR THE PIERRE AUGER COLLABORATION³

 ¹ Karlsruhe Institute of Technology (KIT), ² Universidad Nacional de San Martín (UNSAM)
 ³ Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina Full author list: www.auger.org/archive/authors_2018_10.html, auger_spokespersons@fnal.gov

AMIGA PROTOTYPE ARRAY

- Auger Muons and Infill for the Ground Array (AMIGA) prototype array 2014-2017 • Seven plastic-scintillation detectors buried at $2.3 \,\mathrm{m}$ depth, $5 \times 30 \,\mathrm{m}^2$ and $2 \times 60 \,\mathrm{m}^2$
- Analysis of one year of calibrated data

SYSTEMATIC UNCERTAINTIES

Systematic uncertainties arise from

- Module efficiency correction
- Calibration of PMT channels
- Soil density variations in the field
- LDF shape for individual events
- Attenuation correction

Systematic Uncertainty		Percentage
Eff. corr.	$\sigma_{ m sys, eff}/ ho_{450}$	9.9%
Calibration	$\sigma_{ m sys,thr}/ ho_{450}$	3.9%
Soil density	$\sigma_{ m sys, soil}/ ho_{450}$	2.8%
LDF	$\sigma_{ m sys,LDF}/ ho_{450}$	8.8%
Atten. corr.	$\sigma_{\mathrm{sys},f_{\mathrm{att}}}/f_{\mathrm{att}}$	2.3%
Total	$\sigma_{\mathrm{sys},\rho_{35}}/\rho_{35}$	14.3 %

PIERRE

 0.10_{r}

EFFICIENCY CORRECTION

• Correction for different efficiencies of modules with 5 and $10 \,\mathrm{m}^2$ area due to light attenuation in WLS fibers and PMT after-pulsing

CORNER CLIP. CORRECTION

• Geometrical correction for inclined muons leaving a signal in multiple detector strips • Bias depends on both the shower geometry

 $f_{\rm clip}\left(\theta, \Delta\varphi_{\rm m}\right) = a(\theta) + b(\theta) \cdot |\sin\Delta\varphi_{\rm m}|$

ENERGY DEPENDENCE OF THE MUON DENSITY

MUON DENSITY VS. DEPTH OF SHOWER MAXIMUM

ATTENUATION CORRECTION

- Correction for the attenuation of the muon density due to the atmosphere and soil layer
- Zenith-independent muon density ρ_{35}

- Average logarithmic muon density $\langle \ln \rho_{35} \rangle$ as a function of the average shower depth $\langle X_{\max} \rangle$ (statistical averages, no coincident measurements)
- 38% (EPOS-LHC) to 53% (QGSJetII-04) more muons in data than in simulations

