

Karlsruhe Institute of Technology

Radio detection of cosmic rays with the **Auger Engineering Radio Array**

Tim Huege¹, for the Pierre Auger Collaboration²

¹ Karlsruhe Institute of Technology, IKP, Germany ² Observatorio Pierre Auger, Argentina, full author list at http://www.auger.org/archive/authors_2018_10.html

The Auger Engineering Radio Array

PIERRE []GFR **OBSERVATORY**

 $ho_{..}^{600}$ / N_e $X_{
m max}$

50

60

 $\mathbf{70}$

80

Mass composition sensitivity

- AERA consists of 153 autonomous detector stations on an area of 17 km²
- measures in the 30-80 MHz band
- is triggered by Auger surface and fluorescence detectors, and internally
- radio measurements allow X_{max} determination [4]
- radio measures electromagnetic component, combination with AMIGA muon detection yields additional composition sensitivity [5]

Radio measurements of inclined air showers

Determination of the energy scale

energy deposited on the ground in the

with increasing zenith angle, area illuminated by radio signals grows, covering up to 100 km² with detectable radio signals [6]

electromagnetic component of inclined air showers measurable with radio, complementary to SD, hence Auger radio upgrade

Conclusions

radio measurements with AERA yield complementary information on the energy and mass of cosmic rays measured with Auger

electromagnetic component of inclined air showers can be

- form of radio waves (",radiation energy") is a precise estimator for the energy in the electromagnetic cascade [1]
- radio emission undergoes no absorption or scattering, atmosphere is no issue
- radiation energy is usable for crosscalibration of detectors worldwide, and can be used to determine energy scale from first-principles calculations [2,3]

measured with radio on large scales up to the highest energies

References

[1] Pierre Auger Coll., PRL 116 (2016) 241101

[2] R. Krause for the Pierre Auger Coll., PoS(ICRC2017)528

[3] M. Gottowik et al., Astrop. Phys. 103 (2018) 87

- [4] E. Holt for the Pierre Auger Coll., PoS(ICRC2017)492
- [5] E. Holt for the Pierre Auger Coll., ARENA2018 Proc. in press

[6] Pierre Auger Coll., JCAP in press, arXiv:1806.05386

